

5th Workshop Proficiency Testing for Water Testing Laboratories Evaluation of 4th PT round

Dar es Salaam 4 – 6 December 2007

Report on the Workshop Proficiency Testing for Water Testing Laboratories with Training Course on Method Validation and Measurement Uncertainty

Dar es Salaam, Tanzania, 4 – 6 December 2007

Prepared by Dr.-Ing. Michael Koch

Summary

The workshop covered the evaluation of the 4th SADCMET Water PT round and all aspects that could be derived from the results. The results showed that there is - generally seen - not really an improvement over the 4 PT rounds. Most probably this is due to the absence of adequate corrective actions after failures in the PT.

Therefore one of the topics in the training session was the information how to do corrective actions as part of a method validation procedure.

Most of the participants are still very enthusiastic. It is highly recommended to continue the PT system for chemical analyses and to extend it to microbiology as discussed in 2006. The structure of local coordinators turned out to be very useful and should be further strengthened to minimize logistical problems and to increase the number of participants. The assessment procedure using limited standard deviations has again proven to be very effective, the statistical methods are in accordance with the internationally recommended procedures.

The SADC ASSOCIATION OF WATER TESTING LABORATORIES (SADCWATER-LAB) had its general assembly meeting during the workshop. This association is the responsible body for the PT system and an opportunity for collaboration and information exchange between its members. The role of SADCWATERLAB should be strengthened by an officially memorandum of understanding. This MoU will be finalised within the next months.

Introduction

The workshop reported here followed previous workshops held in Windhoek, Namibia (February 2004), Pretoria, South Africa (November 2004), Dar es Salaam, Tanzania (November 2005) and Gaborone, Botswana (November 2006). The reports are available from http://www.sadcmet.org. As a result of these workshop the first and second proficiency tests for water testing laboratories were organised by Umgeni Water (Pietermaritzburg, South Africa), the following rounds after a training in Germany by Namwater (Windhoek, Namibia). One of the aims of this workshop in Dar es Salaam was the evaluation of the fourth PT round on chemical parameters.

Besides this the opportunity of the workshop was used to provide training courses on method validation and measurement uncertainty.

The cooperation of laboratories within he SADCWaterLab Association was also discussed during the workshop.

Participants and Organisation

The workshop was attended by 32 participants from the following countries:

- Botswana 1
- Ethiopia 1
- Kenya 2
- Madagascar 1
- Malawi 1
- Mauritius 1
- Namibia 3
- South Africa 2
- Swaziland 1
- Tanzania 14
- Uganda 2
- Zambia 1
- Zimbabwe 2

A complete list of participants is given in annex 1.

PT Workshop Programme

Tuesday, 04 December 2007:

Welcome, Opening of ^{4th} PT evaluation and assessment

Wednesday, 05 December 2007:

Training course on Corrective Actions, Method Validation and Measurement Uncertainty

Thursday, 06 December 2007:

Lab visit at Tanzania Bureau of Standards SADCWaterLab general assembly

Tuesday, 04 December 2007

Opening and Evaluation of and experiences from the 4th SADCMET Water PT

- Opening
- All Participants: Introduction
- *M. Conradie*: Experiences of the PT provider
- Local coordinators: Report
- All participants: Working group discussions 1
- *M. Koch*: Assigned values for the 4th SADCMET Water PT
- M. Koch: Presentation on the content of the workshop CD
- *M. Koch*: Evaluation of the 4th SADCMET WATER PT
- *M. Koch*: Development of standard deviations over the 4 PT rounds
- All participants: Working group discussions 2

Opening

The Workshop was officially opened by Charles Ekelege, acting director for the Tanzania Bureau of Standards.

The PTB representative Stefan Wallerath, the new SADCMET regional coordinator Donald Masuku and Mrs.Kezia Mbwambo as chair of SADC Water Lab also welcomed the participants.

All participants shortly introduced themselves.

M. Conradie: Experiences of the PT provider

Merylinda Conradie reported about her experiences with this 4th PT round. She listed the changes in participation from the member countries (table 1).

country	2004	2005	2006	2007
Angola	1	1	1	0
Botswana	2	2	2	4
Ethiopia	1	1	1	0
Kenya	2	2	4	3
Lesotho	1	1	0	1
Madagascar	0	0	2	2
Malawi	2	2	2	3
Mauritius	1	3	4	3
Mozambique	2	3	2	0
Namibia	2	2	3	3
Seychelles	1	2	2	1
Swaziland	1	1	0	1
Tanzania	2	8	5	12
Uganda	1	3	6	5
Zambia	1	4	2	3
Zimbabwe	2	3	3	5
total number	22	44	39	46

Table 1: Number of labs participating in the PT rounds

She listed the parameters to be analysed in this PT round (table 2). There was no change compared to 2006

Table 2: List of parameters in the 3rd PT round

Sulphate Chloride Fluoride Nitrate Phosphate Calcium Magnesium Sodium Potassium Iron Manganese Aluminium Lead Copper Zink Chromium Nickel Arsenic Cadmium

She described the planning including the chemicals used for spiking, the necessary materials for sample preparation and packaging, choice of courier and necessary balances.

In detail she explained the preparation of the samples including

- Cleaning of bottles
- Weighing of chemicals
- Traceability of the weighings by taking pictures with a digital camera
- Digestion of metals
- Preparation of stock solutions
- Labelling of bottles
- Preparation of final batches
- pH adjustment
- Ensuring homogeneity
- Sample dispensing
- Storage
- Preparation of documentation
- Packaging
- Information to courier
- Shipment

The participants from Angola and Lesotho reported customs problems.

Results were received by fax or e-mail. The deadline had to be extended because of courier problems.

The results were typed into an EXCEL spreadsheet. Evaluation was done using the programme developed especially for the SADCMET PT scheme.

Payments were made using bank drafts, transfers and cheques. Some payments were made, but the money is still outstanding. Namwater still experiences problems to identify the payments within Namwater due to insufficient informationfrom bank/participant. Some payments were not yet made at all.

Local coordinators were very helpful especially with the courier problems.

Details of the evaluation were explained by M. Koch in the following presentations. The following challenges for 2008 were identified:

• The results should be used as a motivation to improve performance and apply corrective actions if necessary

- Strive to improve the success
- Increase the number of analysed parameters
- Reporting of results again caused problems with incorrect units (e.g as N and not NO_3 and as P and not PO_4
- Try and rectify the analyses not determined due to a lack of chemicals or problems with equipment
- Instrumentation or method should be stipulated clearly
- Once again very high standard deviations in the 2007 PT scheme to be improved in 2008

The PT provider experienced the following problems:

- Interruptions of sample preparation and evaluation by routine tasks in the laboratory
- Limited number of staff
- Late confirmations and requests of participation caused problems and unnecessary rearrangements with the courier
- The initial return date for the results was set as the 31st of August 2007 with an extension of three weeks for some of the laboratories due to transportation problems. Five laboratories did not submit results at all.
- Follow-up of participation where people did not respond on e-mails
- Late submitting of results due to courier problems delayed the submitting of the evaluation report
- Receipt of results by fax unclear and difficult to get hold of the participant
- Three labs did not take part due to courier problems

M. Conradie expressed her thanks to PTB for the financial support, especially for the new balances, to SADCMET secretariat, to M. Koch, to the Namwater colleagues, the local distributors and all participants.

The full presentation is included in annex 2.

Local coordinators: Report

The local coordinators were asked to fill out a questionnaire (annex 3) for the report about their activities and to give a short oral report.

The completed questionnaires of the local coordinators from Madagascar, Zimbabwe, Uganda, Swaziland, Tanzania, Namibia, Mauritius, Kenya, Malawi and Zambia may be found in annex 4.

It was agreed that it is the local coordinators most important task to promote the PT system as much as possible. The activities of the local coordinator in Tanzania who succeeded in mobilising 12 participants could serve as an example for others. The use of personal contacts seems to be the most efficient way.

All participants: Working group discussions

The experiences of the participants were discussed in three working groups answering seven questions. The results can be summarized as follows:

1. Announcement of the scheme – did you receive enough information in good time?

- Enough time
- E-mail communication problems
- Try to use fax if e-mail does not work
- receipt of communication
- clear and enough

2. Registering – did you have any problems?

• see above

3. Local coordinators – did it work? - have all interested/relevant laboratories got all the information from local coordinators?

- little problems
- resources for communication
- need of support from institutions
- change from persons to institutions
- letter to institution, not to persons
- need of awareness creation
- need to use national associations
- not very effective, letter to be improved
- coordination should be a task of the institutions

4. Shipment – did you encounter any courier problems? - did everybody get the samples in time?

- no problem
- some customs problems
- delay in picking up the samples from LC

5. Reporting of results – any problems?

- no problem
- need for acknowledgement

6. Payment / costs? – Is the fee affordable? – Problems with money transfer?

- Fee is affordable
- no problem with transfer
- need for proforma invoice
- bank charges problems

7. Are you, as a customer, satisfied with the organisation?

- very much satisfied
- work very much appreciated

Need to expand to other areas

M. Koch: Assigned values for the 4th SADCMET Water PT

M. Koch explained the different possibilities for the determination of the assigned values as stated in ISO 13528. Since there no CRM and no reference measurements were available and the consensus means of the participants were not reliable enough, reference values from sample preparation were chosen as assigned values. The procedure for the sample preparation was explained in detail including the formula for the calculation of the assigned value from the different weighings, the molar masses, the purity of the chemicals, the density and the buoyancy correction factor. With this formula a measurement uncertainty budget was calculated according to the Guide to the Expression of Uncertainty in Measurement. The estimation of the uncertainty of the weighings from precision experiments and from manufacturers trueness information was explained. The estimation of all the other uncertainties as shown resulting in the low expanded relative uncertainties (k=2) shown in figure 1.

Figure 1: Expanded relative uncertainties of the reference values

M. Koch: Evaluation of the 4th SADCMET Water PT

M. Koch explained in detail the result of the evaluation of the PT round. As in the last round the assigned values were derived from the weighings made for the preparation of the samples. the standard deviations were calculated using Algorithm A from ISO 13528. These standard deviations were used for the calculation of z-scores, if they were below the limits for the standard deviations agreed upon during the previous workshops (table 3).

	Table 3	3: I	Limits	for	standard	deviations
--	---------	------	--------	-----	----------	------------

Parameter	limit in %
Sulphate	10
Chloride	10
Fluoride	12
Nitrate	15
Phosphate	10
Calcium	10
Magnesium	10
Sodium	10
Potassium	10
Iron	<1 mg/l: 20, >1 mg/l: 12
Manganese	<1 mg/l: 20, >1 mg/l: 12
Aluminium	30
Lead	< 0,5 mg/l: 40, > 0,5 mg/l: 25
Copper	20
Zinc	20
Chrome	25
Nickel	25
Cadmium	30
Arsenic	30

In order not to affect the statistical calculations by gross outliers all values outside the range ref.-value/8 to ref.-value*8 were excluded prior to these calculations. The detailed presentation is included in annex 5.

For the individual parameters the following conclusions could be derived from the data:

- Sulphate: The means of the data were higher than the reference value, showing positive bias. The standard deviations were higher than the limits. The gravimetrically determined values showed a high portion of too high values
- Chloride: There was a quite good agreement between the data means and the reference values. The standard deviations were around the limit. As in the previous round it was not clear, what was meant with the statement "titrimetric" as method. So the method specific evaluation was not very clear. Nevertheless the data showed many outliers (with too high values) for the colorimetric and potentiometric method
- Fluoride: The mean values were around the reference values. For low concentrations the standard deviations were higher than the limit. The colorimetrically determined values had a very high portion of non-reliable values.
- Nitrate: As in the previous rounds some values obviously were reported in wrong units. Therefore the mean values were quite low and the standard deviations high. The average quality of the data is very bad. The parameter needs more emphasis. Harmonization of methods could help.
- Phosphate: Some values also were reported with wrong units. Generally the standard deviation and the number of outliers were high. The data set of colorimetrically determined values contained a high number outlying values, which partially was due to reporting in wrong units.
- Calcium: The mean of the values were close to the reference values. The standard deviations were above the limit. A tendency to lower values could be recognised for AAS-values, a tendency to higher values for titrimetric values

- Magnesium: The mean values were around the reference values, but the standard deviations were too high. Titrimetrically determined values in general were not reliable.
- Sodium: The means were close to the reference values. The standard deviations were too high. Many values determined with FEP were too high, many of the AAS-values were not reliable.
- Potassium: The means of the values were close to the reference values, the standard deviations a bit higher than the limit. AAS values contained many non-reliable data.
- Iron: The means were lower than the reference values and the standard deviations were higher than the limit. The colorimetric method delivered many outlying values.
- Manganese: The means were about 4% below the reference values, the standard deviation around the limit. AAS values showed a broad statistical distribution
- Aluminium: Only few participants analysed this parameter. Therefore the number of values was small. The mean were a bit below the reference values. Lead: The means of the datasets were only a bit below the reference values. Compared with the limit the standard deviations of the datasets were quite low.
- Copper: For this parameter the data means also were in good agreement with the reference values and the standard deviations also were low.
- Zinc/Chromium/Nickel: The data means also showed no bias for the determination of zinc and the standard deviations were around the limit.
- Arsenic: Only a few laboratories analysed for arsenic. So the number of values was very low. The means of the dataset were close to the reference values and the standard deviations were around the limit
- Cadmium: The mean values of the data sets were slightly below the reference values.

Only 4 participants analysed all parameters. The percentage of participation per laboratory is shown in fig. 2.

Figure 2: Percentage of participation for each participant

17 participants managed to analyse more than 80% of their values within the tolerance limits (compared to 10 labs in 2006). Fig. 3 shows the proportion of successfully analysed parameters for each participant.

For the laboratories with more than 80% successfully analysed values the number of values delivered is also shown in the diagram.

The definition of fitness-for-purpose criteria (in the form of limits for the standard deviation) resulted in a higher proportion of values outside the tolerance limits. Experience from Germany shows that normally up to 20% of non-successfully analysed values can be expected for each parameter.

Fig. 4 shows for each parameter the percentage of values outside the tolerance limits. The figure shows that – on the basis of the current fitness-for-purpose-criteria improvement is still necessary for most of the parameters.

Figure 4: Percentage of values outside the tolerance limits for all samples

Michael Koch came to the following conclusions:

- The PT Provider did a very good job
- The evaluation and assessment procedure is fit for the purpose
- The SADCMET Water PT is a good possibility for the participants to compare with peers and with stated fitness-for-purpose criteria
- The results of many laboratories are still not satisfactory and need improvement
- Special emphasis should be put on corrective actions after unsatisfactory participation

M. Koch: Development of Standard Deviations over the 4 PT rounds

M. Koch showed in his presentation (annex 6) the development of the standard deviations over the four SADCMET PT rounds for all parameters. The comparison of the standard deviations of the 4th round with the previous rounds is summarized in table 4:

Table 4: Assessment of the standard deviations of the 3rd round from a comparison with the previous rounds

no change sulphate, chloride, fluoride, phosphate, sodium, iron, manganese aluminium, lead, copper, zinc	; ,
worse nitrate, calcium magnesium	

During the previous workshops the participants agreed on quality standards (limits for the standard deviation) for all parameters. The comparison of the standard deviations calculated from the data sets with these quality standards gives the results shown in table 5.

Table 5: Comparison of calculated standard deviations with the quality standards set during the previous workshops.

good	aluminium, lead, copper, zinc
still acceptable	chloride, potassium, iron, manganese, chromium, nickel, cad-
	mium
not acceptable	fluoride, arsenic
bad	sulphate, nitrate, phosphate, calcium, magnesium, sodium

The main question remaining from these data is, why we can't see a clear improvement after 4 PT rounds. This was also discussed during the following working group discussions.

All Participants: Working group discussions - PT evaluation

Five questions were discussed in three working groups. Results of the discussion:

- 1. How do you judge the outcome of the PT round?
 - some parameters (Ca, Mg) good, bad for some others (Nitrate)
 - quality of results should be improved
 - standard deviations quite high
 - general commitment observed (increased number of labs)
 - not that good

2. Is the evaluation procedure ok?

- yes
- more sample volume for re-testing?
- no doubt
- 3. How can we help national coordinators to better promote the PT scheme?
 - need to support
 - national workshops
 - creation of awareness
 - participants to be ambassadors
 - collect samples at LC instead of national transport
 - talk to other people
 - dissemination of information by participants

4. What has to be changed in the system? (fee, time schedule, ...)

- appointment of LC more official
- announcements earlier
- nothing

5. Why can't we see a clear improvement after 4 PT rounds?

- corrective actions were not taken
- no appropriate quality management system in the labs
- training of trainers need
- problems not properly recognized
- procedure to find the proper corrective action is not clear
- improve equipment
- proper storage procedures needed
- update methods regularly harmonize
- takes long time to get chemicals
- bad quality of chemicals
- high level of staff fluctuation

Further discussions and agreements were made during the SADCWaterLab General Assembly (see below).

Wednesday, 05 December 2007

Training

- **C. Modika:** SABS Proficiency Testing Scheme
- *M. Koch*: Content of the Workshop CD
- *M. Koch*: Types of errors / corrective actions
- *M. Koch*: Method validation
- M. Koch: Explanation of EXCELKONTROL 2.0 software for control charts
- *M. Koch*: Measurement uncertainty revisited

C. Modika: SABS Proficiency Testing Scheme

C. Modika presented the SABS proficiency testing programme with special emphasis on the water check scheme. The complete presentation may be found in annex 7.

M. Koch: Content of the workshop CD

A CD was distributed to all participants by M. Koch with the following content:

- European Union COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption
- Accreditation
 - o CITAC_EURACHEM Guide to Quality in Analytical Chemistry 2002
 - EA-4-09rev01Accreditation for Sensory Testing Laboratories
 - EA-4-10rev02Accreditation for Microbiological Laboratories
 - EA-4-15rev00Accreditation for Bodies Performing non-Destructive Testing
 - EURACHEM_EA Accreditation for Microbiological Laboratories 2002
 - o Ilac-g4 Guidelines on Scopes of Accreditation
 - Ilac-g10 Harmonised Procedures for Surveillance & Reassessment of Accredited Laboratories
 - Ilac-g14 Guidelines for the Use of Accreditation Body Logos and for Claims of Accreditation Status
 - o Ilac-g15 Guidance for Accreditation to ISO-IEC 17025
 - Ilac-g18 The Scope of Accreditation and Consideration of Methods and Criteria for the Assessment
 - Ilac-g19 Guidelines for Forensic Science Laboratories
- Control charts
 - NORDTEST TR 569 Internal Quality Control
 - o new: EXCELKONTROL 2.0 Software for Quality Control Charts
 - Manual for EXCELKONTROL
- General
 - Harmonised Guidelines for the Use of Recovery Information in Analytical Measurements 1998
 - Quality Assurance for Research and Development and Non-routine Analysis
- Measurement uncertainty
 - o A2LA Guide for the Estimation of Measurement Uncertainty In Testing
 - VAM Project 3.2.1 Development and Harmonisation of Measurement Uncertainty Principles - Part (d): Protocol for uncertainty evaluation from validation data
 - EA-4-16rev00EA Guidelines on the Expression of Uncertainty in Quantitative Testing
 - Ilac-g17 Introducing the Concept of Uncertainty of Measurement in Testing
 - NORDTEST Uncertainty of quantitative determinations derived by cultivation of microorganisms
 - NORDTEST Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories
 - EURACHEM/CITAC Quantifying Uncertainty in Analytical Measurement, 2nd Edition 2000
 - *new:* Eurachem/EUROLAB/CITAC/Nordtest Guide (Draft 2007): Estimation of measurement uncertainty arising from sampling

- *new:* EUROLAB Technical report No. 1/2007: Measurement uncertainty revisited: Alternative approaches to uncertainty evaluation
- new: EURACHEM/CITAC Guide: Use of uncertainty information in compliance assessment. First edition 2007
- Proficiency Testing
 - EA-3-04-rev01Use of Proficiency Testing as a Tool for Accreditation in Testing
 - *new:* Ilac-g13 Guidelines for the Requirements for the Competence of Providers of Proficiency Testing Schemes 8/2007
 - Ilac-g22 Use of Proficiency Testing as a Tool for Accreditation in Testing
 - IUPAC The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories 2006
 - Selection, Use and Interpretation of Proficiency Testing (PT) Schemes by Laboratories 2000
- Reference Materials
 - EA-4-14rev00The Selection and Use of Reference Materials
 - Ilac-g9 Guidelines for the Selection and Use of Certified Reference Materials
 - Ilac-g12 Guidelines for the Requirements for the Competence of Reference Materials Producers
 - The Selection and use of Reference Materials 2002
- Traceability
 - EA-4-07 Traceability of Measuring and Test Equipment to National Standards
 - Ilac-g2 Traceability of Measurements
 - EURACHEM/CITAC Traceability in Chemical Measurement 2003
- Validation
 - EURACHEM The Fitness for Purpose of Analytical Methods A Laboratory Guide to Method Validation and Related Topics 1998

M. Koch: Types of errors / corrective actions

M. Koch explained how the graphical displays of lab results vs. assigned values provided with the evaluation report of the PT may be used to get hints for the type of errors in the case of non-satisfactory participation (annex 8).

According to M. Koch the following corrective actions should be applied:

- If you found a proportional systematic error: Check calibration
- Check for precision using internal quality control data (Control Charts)
- Check for bias using a certified or in-house reference material
- If you can't find the problem, carry out full method validation

M. Koch: Method validation

M. Koch explained the principals of method validation and what is necessary under given circumstances. After a definition and introduction he put special emphasis on the calibration including linearity, residual analysis, homogeneity of variances and outlier tests. He described methods for the determination of I.o.d. and I.o.q. Selectivity and robustness of methods were also described. Finally the standard addition procedure – a calibration in the real sample – was explained. The full presentation is attached in annex 9.

M. Koch: Explanation of EXCELKONTROL 2.0 – software for control charts

M. Koch explained the new version of EXCELKONTROL 2.0 – a freeware tool for control charts programmed by Michael Gluschke and Michael Koch. The programme is included in the workshop CD.

M. Koch: Measurement uncertainty revisited

Based on the EUROLAB Technical Report No. 1/2007 "Measurement Uncertainty Revisited" M. Koch described alternative approaches to uncertainty evaluation. These approaches can be grouped into

- two intralaboratory approaches
 - Modelling approach (often called the "GUM approach")
 - Single laboratory validation approach
- two interlaboratory approaches
 - o Interlaboratory validation approach
 - PT approach

The full presentation is included in annex 10.

Thursday, 06 December 2006

Lab visit

SADCWaterLab General Assembly

Lab visit

In the morning the participants could visit the laboratory facilities of the Tanzania Bureau of Standards.

SADCWaterLab General Assembly

Kezia Mbwambo welcomed all members as chair of SADCWaterLab and gave a short introduction for new participants. Donald Masuku, the secretary, presented the agenda, which was adopted by the participants.

Kezia Mbwambo gave a short **report about the PMC meeting** on Monday. All subjects discussed at the PMC meeting were also on the agenda for the general assembly.

Some discussion points **remained from the previous meeting in Gaborone**. D. Masuku stated, that due to SADC regulations it is not possible to have voting rights for associate members.

The **Memorandum of Understanding (MoU)** could not yet be finalised. But this will be done during the next months.

D. Masuku reported about the status of the **new SADC standard on drinking water**. The draft at present is on the committee stage. There it goes to all members for 6 months for comments. Those will be collected by the secretary. A 3 months approval stage will follow. So the new standard is expected to be ready in September 2008. Discussion of **parameters** in the Water PT resulted in Cobalt to be added in 2008. **Standard deviation limits** were also discussed. It was agreed, that the limits for parameters where the calculated standard deviations were significantly lower than the limits should be adjusted. M. Koch will make proposals.

Patricia Ejalu sent a **status report for the microbiology PT**. This report is attached as annex 11. The Uganda National Bureau of Standards received all necessary equipment except sterile plastic bottles for sample distribution, which will be provided by PTB, staff is trained, some trial runs are in progress.

A brainstorming on possible mutual help within SADCWaterLab resulted in the following ideas:

- exchange test methods for harmonization
- help is needed for laboratories how to write a quality manual
- training through SADCAS on quality management issues is proposed for the next evaluation workshop
- **staff exchange** (especially visits in accredited labs for about 2 weeks) would be helpful. This could promote exchange of information on accreditation issues and technical know-how as well as harmonization of methods. Sponsorship of such staff exchange through PTB might be possible.

The **next evaluation workshop** should be held in Kampala (Uganda) together with the evaluation workshop for the microbiology PT. If this is not possible, Windhoek could be a suitable venue.

Sustainability of the PT system (without sponsoring in future) can only be achieved by **increasing the number of participants**. Therefore **national workshops** could be a good tool to raise awareness. Promotion of the PT scheme within the **SADC structures** also could be helpful.

Under the topic "any other business" the following was discussed:

- focus for next years training:
 - quality management
 - o basic statistics
 - if possible there should be basic as well as advanced training to fulfil all requirements
- it was recommended to extend the EAC PT systems (with other matrices) also to SADC countries.

The discussions were summarized in the work programme 2008 for SADCWaterLab (table 6).

Table 6: SADCWaterLab work programme 2008

Put presentations on the web and inform par-	Dec 07	Michael
Mol I to be finalised	.lan 08	Donald
recirculate questionnaire on used instrumenta-	Feb 08	Donald
tion	1 00 00	Donaid
search for useful used instrumentation	ongoing	Michael/Stefan
clarify local coordinators	Jan 08	Donald
write new letter for nomination of local coordi-	Jan 08	Donald
nators directly to institutions		
redesign PT leaflet	Feb 08	Donald
microbiology PT according to work plan in re-	announcement	Patricia
port	Jan 08	
install mailing list	Jan 08	Donald
PT provider to contact well performing labs in	Feb 08	Merylinda
nitrate and phosphate to precisely describe		
their methods in the mailing list		
next chemistry PT	according to	Merylinda
	decided	
	schedule	
	announcement	
	Feb 08	
evaluation workshop in Kampala (if not possi-	Nov/Dec 08	all
ble: Windhoek)		
promote the PT scheme	ongoing	all
raise awareness through national workshops	ongoing	all

Evaluation questionnaire

M. Koch distributed an evaluation questionnaire (annex 12) for the workshop to be filled out by all participants.

The results of this questionnaire were as follows:

The judgement of the participants regarding

• The venue of the workshop:

Very good 9 Good 15 Mean: 1.63 (1 for very good, 2 for good)

• The content of the presentations:

Very good 9 Good 14 Fair 1

Mean: 1.67 (1 for very good, 2 for good, 3 for fair)

• The material distributed:

Very good 8 Good 12 Fair 3

Mean: 1.78 (1 for very good, 2 for good, 3 for fair)

• The working group discussions:

Very good 8 Good 14 Mean: 1.64 (1 for very good, 2 for good)

The judgement of the participants regarding the different parts of the workshop on a scale from 1 (very useful) to 5 not useful):

• Evaluation of the chemistry PT

- 1: 20 2: 3 3: 0 4: 0 5: 0 Mean: 1.13
- Training
 - 1: 12
 - 2: 7
 - 3: 4
 - 4: 1
 - 5: 0
 - Mean: 1.75
- Lab Visit
 - 1: 12
 - 2: 11
 - 3: 1
 - 4: 0
 - 5: 0

Mean: 1.54

- SADCWaterLab Meeting
 - 1: 14
 - 2: 9
 - 3: 1
 - 4: 0
 - 5: 0

Mean: 1.46

The most important topics (in brackets the number of participants mentioning this point):

- Measurement uncertainty training (21)
- Method validation training(20)
- Evaluation of Chemistry PT (12)
- Control charts (6)
- Experience of the PT provider (5)
- Lab visit (5)
- Quality Assurance (3)
- SADCWATERLAB meeting (3)
- PT sample preparation (3)
- Limit of quantitation (2)
- Corrective actions (2)
- Comparison of PTs (2)

- Sampling (2)
- Method performance (1)
- Calibrations (1)
- Internal auditing (1)
- Discussion of colleagues (1)
- Discussions on the way forward (1)
- Sustainability of PT (1)

Did the workshop fulfil your expectations?

Yes: 21 No: 2

Partly: 1

reasons for no or partly:

- no answer
- Time for training was too short (twice)

What benefits did you draw from the workshop?

- The training on method validation and uncertainty
- PT sample preparation, modelling approach, purity of chemicals from manufacturer, evaluation of x-charts
- It helped me to correct my mistakes; to identify the method best for the parameter; to know how provider take trouble to prepare the sample; to exchange ideas with other participants; GUM approach of measurement uncertainty
- to make sure the instrument is fully calibrated and all equipment used are rinsed properly and reporting in correct units
- ExcelKontrol software; CD on the whole workshop
- How to draw and use the control chart and how to do method validation
- Good analytical results can be obtained by proper analytical methods, good reagents etc.
- PT is a vital tool to our lab to met the national requirements; to go home and arise awareness to other labs to participate in the PT scheme; GUM approach
- too much to mention; much I expect to gain
- I learnt more about the process involved in PT preparation and dispatch; I learnt more about the various methods that give better results.; I gathered helpful suggestions from the discussions
- I learnt enough on method validation
- Better understanding of measurement uncertainty to be used in full implementation of the ISO/IEC 17025 system
- None
- General ideas in labs performance in the SADC region. But I recommend, the SADCMET to extend the testing parameters including PESTICIDE RESIDUES in water (drinking water?)
- Uncertainty
- The PT evaluation assisted me to continue improving our laboratory performance by identifying the corrective actions to be undertaken
- Exchange of ideas and knowledge. Opportunities of acquiring donated equipment. Sponsored forum which may not have ben possible, if countries were self sponsored. Training materials which are very useful. The PT is being used as a yardstick for improvement in the performance of the lab

- Knowledge and continuous improvement
- Exposure and communication establishment with the different participants
- Training on different approaches for measurement uncertainties
- Enrichment of my knowledge in method validation, calculation of uncertainties, control charts, information derived from the evaluation of the PT results
- An idea on how to go about correcting unsatisfactory results

Any other comments:

- The one week (or so) training has been so intensive, which is a good thing. However the organisation of the future evaluation workshops should leave some time at the end (say half a day) for the participants to visit some sites in the country and also to relax.
- The time schedule for technical trainings should be extended; the time for lab visits should also be increased to provide more time for healthy information exchange and discussions

Closure of the meeting

Kezia Mbwambo, Donald Masuku, Stefan Wallerath and Michael Koch closed the workshop and thanked all participants for their cooperation.

Report prepared by Dr.-Ing Michael Koch Stuttgart, 10.1.2008

Annex I - List of Participants and Lecturers

	Name		Institution	City	country		e-mail
Mr.	Teddy	Ditsabatho	Water Utilities Corporation	Gaborone	Botswana	tditsabatho@wuc.bw	
Mr.	Mulugeta Melkonnen	Bedye	Quality and Standards Authority	Addis Abbaba	Ethiopia	mulugetamb@yahoo.com	
Mr.	Peter Oduol	Onyango	Kenya Bureau of Standards	Nairobi	Kenya	oduolpet@yahoo.co.uk	
Mrs.	Felista	Nyakoe	Kenya Bureau of Standards	Nairobi	Kenya	kerubof@kebs.org	fkerubo@yahoo.com felista.nyakoe@gmail.com
Mr.	Isaac	Chirwa	Malawi Bureau of Standards	Blantyre	Malawi	<u>isaacchirwa@mbsmw.org</u>	<u>chirwai2000@yahoo.co.uk</u>
Mr.	Shabbir Hammad	Ghoorun	Mauritius Standards Bureau	Moka	Mauritius	shghoorun@msb.intnet.mu	
Mr.	Michel Jean Yves	Mong	CNRE	Antananarivo	Madagascar	mong@mel.moov.mg	
Mrs.	Merylinda	Conradie	Namwater	Windhoek	Namibia	conradiem@namwater.com.na	
Mrs.	Silke	Kriess	Namwater	Windhoek	Namibia	kriesss@namwater.com.na	
Mrs.	Imogen	van Rooi	City of Windhoek	Windhoek	Namibia	ijv@windhoekcc.org.na	
Mrs.	Zanele	Sqwane	Rural Water Supply	Mbabane	Swaziland	zanelesgwane@webmail.co.za	
Mrs.	Kezia	Mbwambo	Tanzania Bureau of Standards	Dar es Salaam	Tanzania	<u>kmbwambo@yahoo.co.uk</u>	
Mrs.	Victoria	Stephen	Tanzania Bureau of Standards	Dar es Salaam	Tanzania	<u>vickyshida@yahoo.co.uk</u>	
Mr.	John	Bomani	SWAMIC	Dar es Salaam	Tanzania		
Mr.	Phillipo	Chandi	Water Central Lab	Dar es Salaam	Tanzania		
Mrs.	Theresia	Kahatano	GCLA	Dar es Salaam	Tanzania		
Mr.	Lweikiza	Kamara	Chemical and Process Laboratory	Dar es Salaam	Tanzania		
Mr.	Christopher	Boniface	North Mara Environmental Laboratory	Tarime	Tanzania	cboniface@barrick.com	
Mrs.	Latifa	Musa	Tirdo	Dar es Salaam	Tanzania	<u>tifah_m@yahoo.com</u>	
	Zaituni S.	Thani		Mwanza	Tanzania		
Mr.	Edson	Msangula	Environment and Oil Laboratory	Mwanza	Tanzania	Edson.Msangula@sgs.com	<u>emsangula@yahoo.com</u>
Mr.	Patrick	Kibasa	Moshi Urban Water Supply and Sewerage Authority	Moshi	Tanzania	<u>pkibasa@yahoo.com</u>	info@muwsa.or.tz
Mr.	Tano	Hangali	Tropical Pesticides Research Institute	Arusha	Tanzania		
Mr.	Michael	Mayuni	Chemistry-Department University of Dar Es Salaam	Dar es Salaam	Tanzania	mayuni@chem.udsm.ac.tz	
Mrs.	Hope	Kamusiime	Uganda National Bureau of Standards	Kampala	Uganda	hope.kamusiime@unbs.go.ug	<u>h_kamusiime@yahoo.com.sg</u>
Mr.	Phenny Dentons	Kaviiri	Uganda National Bureau of Standards	Kampala	Uganda	kdentons@yahoo.co.uk	dentons.kaviiri@unbs.go.ug
Mrs.	Margaret	Mazhamo	Food and Drugs Control Lab	Lusaka	Zambia	<u>mazhamoms@yahoo.com</u>	
Mrs.	Naume	Mandizha	Zimlabs	Harare	Zimbabwe	zimlab@africaonline.co.zw	
Mrs.	Penia	Mubika	Standards Association of Zimbabwe	Harare	Zimbabwe	sazcft@mweb.co.zw	
Mrs.	Constance	Modika	SABS - South Africa Bureau of Standards	Pretoria	South Africa	modikac@sabs.co.za	
Mr.	Donald	Masuku	NMISA National Metrology Institute South Africa	Pretoria	South Africa	<u>dmasuku@nmisa.org</u>	
Mr.	Stefan	Wallerath	PTB - Physikalisch-Technische Bundesanstalt	Braunschweig	Germany	stefan.wallerath@ptb.de	
Mr.	Michael	Koch	ISWA Universität Stuttgart	Stuttgart	Germany	michael.koch@iswa.uni-stuttga	art.de

number of participants						
Country	2004	2005	2006	2007		
Angola	1	1	1	0		
Botswana	2	2	2	4		
Ethiopia	1	1	1	0		
Kenya	2	2	4	3		
Lesotho	1	1	0	1		
Madagascar	0	0	2	2		
Malawi	2	2	2	3		
Mauritius	1	3	4	3		
Mozambique	2	3	2	0		

Changes and Progress in the number of participants

Country	2004	2005	2006	2007
Namibia	2	2	3	3
Republic of Seychelles	1	2	2	1
Swaziland	1	1	0	1
Tanzania	2	8	5	12
Uganda	1	3	6	5
Zambia	1	4	2	3
Zimbabwe	2	3	3	5
Number of labs participating	22	44	39	46
				NAMMAT

		Г	aiai	nete	12		
2	004	2	005	2	006	2	007
Anions	Cations	Anions	Cations	Anions	Cations	Anions	Cations
SO4	Ca	SO4	Ca	SO4	Са	SO4	Са
CI	Mg	CI	Mg	CI	Mg	CI	Mg
F	Na	F	Na	F	Na	F	Na
NO3	К	NO3	К	NO3	К	NO3	К
	Fe	PO4	Fe	PO4	Fe	PO4	Fe
	Mn		Mn		Mn		Mn
	AI		AI		AI		AI
			Pb		Pb		Pb
			Cu		Cu		Cu
			Zn		Zn		Zn
			Cr		Cr		Cr
			Ni		Ni		Ni

<text><list-item><list-item><list-item><list-item>

Weighings of wires

- Start of by weighing the different target masses for the 3 levels of each parameter
- Continue with the weighings of the metals where different wires were used

Calculated Sample mass - cations

Parameter	Chemical	Purity %	Level 1	Level 2	Level 3
Calcium	CaCl2.2H2O	99.5	7.2911	13.7358	23.0648
Magnesium	Mg(NO3)2.6 H2O	99.5	27.006	41.4963	72.8506
Sodium	NaCl	99.6	8.0412	12.6016	18.5693
Potassium	KCI	99.6	2.2736	2.9922	4.4514
Iron	Fe-Wire	99.95	0.1100	0.2034	0.3156
Manganese	Mn-Powder	99.4	0.1061	0.1328	0.2637
Aluminium	Al-wire	99.9995	0.1134	0.1560	0.3222
Lead	Pb(NO3)2	99.7	0.1409	0.1905	0.3811
Copper	Cu-wire	99.999	0.1188	0.2380	0.3947
Zinc	Zn-wire	99.99995	0.138	0.2694	0.5663
Chromium	CrCl3.6 H2O	99	0.2688	0.5554	0.9795
Nickel	Ni-wire	99.9975	0.3649	0.2428	0.3244
Arsenic	As2O3	99.50	0.1853	0.3834	0.1256
Cadmium	CdCl2	99.995	1.1845	0.4688	0.1728
Sample 4, 5 and preservation to The final weight	d 6 were constituted a pH 2.1. The san t for the cation samp	l as follow nples mat bles was s	vs with HNO3 rix was pure 57.08g with th	acid water. ne	

Calculated Sample mass - Anions

Parameter	Chemical	Purity %	Level 1	Level 2	Level 3
Sulphate	K2SO4	99.5	7.0676	10.3072	13.6371
Chloride	KCI	99.6	11.0492	13.5912	17.365
Fluoride	KF	100	0.2000	0.3404	0.5938
Nitrate	KNO3	99.3	3.1201	7.2868	12.3361
Phosphate	KH2PO4	99.9	1.5061	2.9053	3.6030

NAMN

Sample 1, 2 and 3 were constituted as follows without acid preservation. The sample matrix was pure water. The final weight for the cation samples was 57.08g with the Density (Deionised water) = 0.998 g/ml and the temperature 24 °C.

Preparation of final batches

- Obtain a suitable balance
- Find a suitable container
- Made special rack for the stirrer in order to mix the samples properly

Preparation of the 200g weighings

- Weigh the empty container
- Weigh the calculated amount of the different stock solutions with the density taken into consideration
- Add some water into the big container
- Add the calculated amount of the stock solution (by weight)
- Rinse over in the 100 I container
- Fill by weight

<section-header><list-item><list-item><list-item><list-item>

pH adjustment

- Stirring took place for continuously during the process
- Filled by weight
- Final stirring for 15 minutes
- Document the pH

Preparation of the documentation

- Hard copies of the forms for the results and the method information were included in each box
- Labels of all the participants were prepared

Packaging of the samples

- Packed six polyethylene bottles into each box
- Shredded paper was used for the packaging material
- sealed with packaging tape

NAMWATER

<section-header><list-item><list-item><list-item><list-item><list-item>

Evaluation Workshop of 4th SADCMET Water PT scheme 04.-06.12.2007, Dar es Salaam, Tanzania

Local Coordinator's report on PT promotion

Guiding Questions:

- 1. For which country are you the local PT coordinator?
- 2. How many laboratories doing water testing (amongst other duties) do approximately exist in your country?
- 3. Which are the most important ones? Which mandate/background do they have? (private, public, under which ministry, water utility company)
- 4. How did you promote the PT scheme?
- 5. How was the feedback from the laboratories?
- 6. How many labs did participate in your country? (did they all submit results?)
- 7. What are the reasons for non-participation?
- 8. How did you arrange for the payments? (commonly, individually?)
- 9. Did you encounter customs problems during reception of the samples? (if yes, during which year/round?)
- 10. Did you pro-actively inform customs authorities in your country?
- 11. Do you feel you required additional support/guidance? (from whom? In order to address which issue/challenge?)
- 12. Feel free to give us additional comments (use the back of the form, if required):

THANKS FOR YOUR COOPERATION !!

Madagascar

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

3 labs, but participating to the PT

Which are the most important ones? Which mandate/background do they have?

TIRAMA's water testing laboratory under Mining & Energy Ministry, which is not participating in the PT for financial rehabilitation

How did you promote the PT scheme?

As the local coordinator I am due to make the existence of PT known by all laboratories while working with standards bureau and through workshops

How was the feedback from the laboratories?

Laboratories are interested, but only 3 labs are working in the water testing field

How many labs did participate in your country?

2 for the time being, but still lobbying to get all 3 labs participating. Both labs submitted results

What are the reasons for non-participating?

Tirama's water lab would participate after financial restructuration. Following are the main reasons for non-participation:

- Ability to pay participation fee
- lower awareness regarding the importance of PT schemes
- problems with old equipment and standards

How did you arrange for the payments?

The payments were made individually

Did you encounter customs problems during reception of the samples?

No, although customs duties are supported by my institution (CNRE)

Did you pro-actively inform customs authorities in your country?

I have to address the issue at the level of Standards Bureau much more in charge of SADC affairs

Do you feel you required additional support/guidance?

Probably a letter to be addressed to Standard Bureau for the issue above-mentioned

Additional comments:

Promotional meeting also has been carried out with the National Water and Sanitation Authority (ANDEA) of Madagascar

Zimbabwe

How many laboratories doing water testing(amongst other duties) do approximately exist in your country? about 20

Which are the most important ones? Which mandate/background do they have?

Ministry of Health, SA2 for regulation and standardization, WLA2

How did you promote the PT scheme?

How was the feedback from the laboratories?

Good on PTS scheme

How many labs did participate in your country?

5, all reporting results

What are the reasons for non-participating?

- Lack of awareness
- General apathy
- foreign currency
- lack of capitalisation
- no equipment
- no calibration of equipment

How did you arrange for the payments?

bank transferfor BARC

Did you encounter customs problems during reception of the samples? No

Did you pro-actively inform customs authorities in your country?

Do you feel you required additional support/guidance?

Additional comments:

Zimbabwe is a country ... siege. Capitalisation of labs has suffered a lot under such an environment. Huge inflation gave rise to unaffordable costs of equipment, calibration and chemicals

Uganda

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

15

Which are the most important ones? Which mandate/background do they have?

8

- Private
- Water utility company
- Labs for the water processing industry
- Regulatory agencies
- Academia

How did you promote the PT scheme?

Through

- meetings
- personal contacts, i.e. telephones, e-mails

How was the feedback from the laboratories?

Not highly responsive, waiting for the PT from university, waiting for the EAC-scheme, that was free

How many labs did participate in your country?

5

What are the reasons for non-participating?

- Fees
- Willing
- Long procurement systems in some organisations

How did you arrange for the payments?

Individual payments

Did you encounter customs problems during reception of the samples? No

Did you pro-actively inform customs authorities in your country? No

Do you feel you required additional support/guidance?

Yes, on issues concerning resources for awareness and communication

Swaziland

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

About 8 laboratories and some from the private companies. They all shown interests but fear of their bosses

Which are the most important ones? Which mandate/background do they have?

All important water analysis is under the ministry of natural resources and energy

How did you promote the PT scheme?

Arranging meetings trying to explain what is the PT, but their hands were full, they couldn't participate

How was the feedback from the laboratories?

Their supervisors wouldn't allow them to participate the brochure will be useful

How many labs did participate in your country?

None – but laboratories doing microbiology, they are interested. So they want to know when is it

What are the reasons for non-participating?

see above

How did you arrange for the payments?

inividual

Did you encounter customs problems during reception of the samples?

No. Samples were delivered from the airport and phoned. When I went to collect the samples they told me it has to be picked by the courier and they charged

Did you pro-actively inform customs authorities in your country? No

Do you feel you required additional support/guidance?

Yes

Additional comments:

The brochure I think will be more useful to our colleagues

Tanzania

How many laboratories doing water testing(amongst other duties) do approximately exist in your country? about 55

Which are the most important ones? Which mandate/background do they have?

- Private
- Public
- Water utility companies
- Academia

How did you promote the PT scheme?

- Leaflet
- Letter of invitation
- Calls to the lab managers
- e-mails
- Informed during national PT meeting

How was the feedback from the laboratories?

Very slow, I had to follow it up by visiting/calling. I invited labs, but only 13 confirmed participation

How many labs did participate in your country?

13 confirmed participation and received samples; 1 lab did not submit results

What are the reasons for non-participating?

- lack of awareness of PT
- they think PT is not adding any value to them

How did you arrange for the payments?

Those who submitted in time, the payment was done commonly. Otherwise individual payment was also done

Did you encounter customs problems during reception of the samples?

Only this round samples were not delivered to TBS, but we had to clear the samples from the airport, after some clarification

Did you pro-actively inform customs authorities in your country?

No, because there was nor problem faced in previous rounds

Do you feel you required additional support/guidance?

letter for coordination was addressed to me, not to the CEO of the institution. Provider to ensure samples are delivered to the coordinator.

Additional comments:

1. I would suggest more awareness workshops be conducted at national levels

- Payment shall be individually
 Letters to Local Coordinators to be resent

Namibia

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

Which are the most important ones? Which mandate/background do they have?

Namwater, City of Windhoek

How did you promote the PT scheme?

E-mailed "flyer" to other labs and Trade & Industry

How was the feedback from the laboratories?

3 interested labs – good others - poor

How many labs did participate in your country?

3, all submitted results

What are the reasons for non-participating?

Water related parameters carried out too little

How did you arrange for the payments?

Send out a temporariliy invoice

Did you encounter customs problems during reception of the samples? No

Did you pro-actively inform customs authorities in your country? No

Do you feel you required additional support/guidance?

- Angola is a problem
- List countries who paid money for the customs
- Local coordinators should be proactively involved with customs
- Fax proof of payment

Mauritius

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

Which are the most important ones? Which mandate/background do they have?

All of them are important.

They fall under various ministries:

- 1. Ministry of Public Utilities
- 2. Ministry of Agro Industry & Fisheries
- 3. Ministry of Industry

How did you promote the PT scheme?

By talking with the heads of labs about the importance of the PT scheme

How was the feedback from the laboratories?

main problem was the approval for payment

How many labs did participate in your country?

3

What are the reasons for non-participating?

People must be encouraged Decision amking problem

How did you arrange for the payments?

Individually

Did you encounter customs problems during reception of the samples?

No

Did you pro-actively inform customs authorities in your country?

The Water samples were brought by the courier company to the Bureau without any problems

Do you feel you required additional support/guidance?

Yes, we need a brochure to be given to potential participants

Kenya

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

- National irrigation board labs
- KEBS
- National Water Control Laboratories
- Government Chemist
- Public Health Laboratories
- Nairobi National Water
- Mines & geology labs
- SGS laboratories
- Universities

Which are the most important ones? Which mandate/background do they have?

- National Water Control Laboratories
- Nairobi National Water
- KEBS

How did you promote the PT scheme?

- Testing open days
- Customer education / information sessions

How was the feedback from the laboratories?

positive

How many labs did participate in your country?

3

What are the reasons for non-participating?

- New into market
- Payment problems

How did you arrange for the payments?

Did you encounter customs problems during reception of the samples? No

Did you pro-actively inform customs authorities in your country? Yes

Do you feel you required additional support/guidance?

Malawi

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

9

Which are the most important ones? Which mandate/background do they have?

- MBS (public)
- NRWB (public)
- Polytechnic (university)
- BWB (public)
- SRWB (public)
- all water boards under the Ministry of water development and irrigation

How did you promote the PT scheme?

- Through publicity and correspondences
- plans are underway early next year to hold workshops

How was the feedback from the laboratories?

Feedback was quite encouraging although there were late responses

How many labs did participate in your country?

4 labs registered MBS, Poly, NRWB failed to communicate with the forth city assembly

What are the reasons for non-participating?

Most other labs do not have enough equipment although the have expertism

How did you arrange for the payments?

Individually, however they were given the other option as well

Did you encounter customs problems during reception of the samples?

We were charged handling and clearing charges. There were no problems with customs, but the problems were with the office to effect handling and clearing payment

Did you pro-actively inform customs authorities in your country?

We have had no problems with them therefore here was no need to inform them in advance

Do you feel you required additional support/guidance?

Yes, support on capacity building in terms of equipment such as AAS. Main challenges are to meet customer demands. In that not all required parameters are analysed

Additional comments:

MBS – Statutory Cooperation – under Ministry of Trade Northern Region Water Board – Ministry of Water Development and Irrigation

Southern Region Water Board – Ministry of Water Development and Irrigation Central Region Water Board – Ministry of Water Development and Irrigation Blantyre Water Board – Ministry of Water Development and Irrigation Lilongwe Water Board – Ministry of Water Development and Irrigation Polytechnic – University of Malawi Statutory Cooperations Chancellor College– University of Malawi Statutory Cooperations Mzuzu University

Challenges:

- melting the customers expectations in terms of the parameters in question as well as residence time due to lack of equipment and adequate personel
- Top management commitments to support and equip the labs due to financial hardships
- choice of appropriate method

Other isues:

Organise other training workshops for all participating labs other than National Coordinators alone, or support the National coordinators to organise internal training workshop

Zambia

How many laboratories doing water testing(amongst other duties) do approximately exist in your country?

Which are the most important ones? Which mandate/background do they have?

FOCL – Ministry of Health NISIP – Research Laboratory F+Kwight – Private (accredited) NicawaWater Utilities company

How did you promote the PT scheme?

- communication through mail, telephone, fax, e-mail
- PT brochure

How was the feedback from the laboratories?

positive F+Kwight, accredited lab – did not respond

How many labs did participate in your country?

3

What are the reasons for non-participating?

- lack of interest
- inadequate capacity in the laboratories

How did you arrange for the payments?

individually need a quotation for payment and receipts

Did you encounter customs problems during reception of the samples?

007 had to pay customs duty and handling charges as local coordinator about 100 US-\$

Did you pro-actively inform customs authorities in your country?

Customs informed, but could not waiver the duty and handling charges

Do you feel you required additional support/guidance?

Awareness of the PT scheme in the country Workshop, IEC materials

- More support in form of IEC materials
- Better arrangements for transportation of samples
- Better communication system (Tel, Fax, e-mail)
- enlist a courier company which the receiver does not pay duty & handling charges

			37	Universität Stuttga	
Limits for standard deviation					
	parameter	std limit	parameter	std limit	
	sulphate	10 %	iron	20 % / 12 %	
	chloride	10 %	manganese	20 % / 12 %	
	fluoride	12 %	aluminium	30 %	
	nitrate	15 %	lead	40 % / 25 %	
	phosphate	10 %	copper	20 %	
	calcium	10 %	zinc	20 %	
	magnesium	10 %	chromium	25 %	
	sodium	10 %	nickel	25 %	
	potassium	10 %	cadmium	30 %	
			arsenic	30 %	
3	3 Koch, M.: PT evaluation – SADCMET PT Workshop 2007 Dar es Salaam				

lity star fit for th	ndards - ne purpo parameter Manganese	limit in % <1 mg/l: 20%, >1mg/l: 12%	
fit for th	parameter Manganese	limit in % <1 mg/l: 20%, >1mg/l: 12%	
	parameter Manganese	limit in % <1 mg/l: 20%, >1mg/l: 12%	
	parameter Manganese	limit in % <1 mg/l: 20%, >1mg/l: 12%	
	parameter Manganese	limit in % <1 mg/l: 20%, >1mg/l: 12%	
	Manganese	<1 mg/l: 20%, >1mg/l: 12%	
	Aluminium	>1mg/l: 12%	
	Aluminium		
	,	30%	
	Lead	<0,5 mg/l: 40%,	
	Copper	20%	
		2070	
	Zinc	20%	
	Chromium	25%	
	Nickel	25%	
20%,	Arsenic	20%	
12%	Cadmium	20%	
1	20%, 12%	Zinc Chromium Nickel 20%, 12% Cadmium	Zinc 20% Chromium 25% Nickel 25% Arsenic 20% I2% Cadmium 20%

TITLE: SABS PROFICIENCY TESTING SCHEME, RSA

PRESENTED BY: Ms C. MODIKA

Contact Info : +27(0) 428 6383 Fax No. ; +27(0) 428 6019 E-mail : <u>Modikac@sabs.co.za</u>

TANZANIA, 3 – 8 December 2007

Mission

Mission Statement of SABS:

Ø To offer value-added standardization services on an ethical and principled basis that uplift the African standard and empower South African industry to compete vigorously towards increased market access. In so doing SABS contributes to the economic growth of South Africa and Africa as a whole within a framework that protects consumers and the environment by promoting uncompromised quality of products and services.

SABS

Purpose of PTS

 The SABS Commercial (Pty) Ltd (Food Chemistry), is a provider of a proficiency testing scheme (PTS) and recognized by a accreditation body SANAS (South African National Accreditation System) according to ILAC G 13 (Guidelines for the requirements for the competence of providers of proficiency testing schemes).

SABS

 It is recognised that schemes conducted may have primary aims such as establishing the effectiveness and precision of test methods, equipment and evaluating the individual performance of laboratory staff.

SOUTH AFRICAN BUREAU OF STANDARDS - WATER-CHECK PROGRAMME

TABLE A

ANALYTICAL RESULTS

GROUP 1																				Gr 1 (cont	t)					I	age 4 of	13	
Determinand		B1	В3	B5	B7	B8	B9A	B9B	B10	B11A	B11B	B14	B16	B16a	B19	B21A	B21B	B22	B23	B25	B30	B31	B33	B34	B36	Spike ug	I Median	Robust SD	n
Aluminium as Al in µg/l	1 2 3			723,0 1523 211,0		792,0 1582 203,0	803,0 1450 341,0		807,0 1523 254,0	857,0 1692 273,0		810,0 1400 30,00			590,0 1380 10,00	995,0 2002 361,0	959,0 1861 379,0	752,0 1500 38,00	870,0 1520 195,0	872,0 1600 236,0	573,0 1346	782,0 1516 356,0			804,0 1575 216,0	750,0 1500 375,0	802,0 1552 257,0	105 151 85	48 48 47
Barium as Ba in µg/l	1 2 3	176,5 512,5 326,5		200,0 513,0 344,0		167,0 468,0 314,0	434,0 470,0 291,0		220,0 549,0 307,0	217,0 559,0 388,0		185,0 490,0 335,0			170,0 470,0 320,0	286,0 774,0 525,0		146,0 434,0 303,0		191,0 489,0 327,0		192,0 483,0 336,0			185,0 491.0 327,0	150,0 450,0 300,0	190,0 488.0 327,0	15 27 18	34 34 34
Beryllium as Be in µg/l	1 2 3	36,00 139,5 91,00		49,00 149,0 62,00		50,00 153,0 91,00	110,0 114,0 77,50		51,00 149,0 59,00	52,00 156,0 93,00		52,00 155,0 80,00			50,00 150,0 70,00	53,00 190,0 112,0	47,00 182,0 96,00	34,00 120,0 46,00	50,00 150,0 90,00	51,00 154,0 74,00						50,00 150,0 100,0	50,00 150,0 81,79	3 7 14	25 25 25
Boron as B µg/l	1 2 3	425,5 2075 1055		560,0 2091 1087		591,0 2012 1048	1480 1502 908.0		568,0 2025 1059	576,0 2135 1108		550,0 2000 1000			330,0 1340 750.0	776,0 2761 1412	763,0 2521 1370	505,0 1370 927.0		572,0 2010 1070		566,0 2011 1033				500,0 2000 1000	541,0 2005 1038	53 162 83	29 30 30
Cadmium as Cd in µg/l	1 2 3	137,5 553,0 263,5		117,0 517,0 230,0		115,0 489,0 234,0	478,0 214,0 101.0		145,0 577,0 231.0	133,0 532,0 265,0		140,0 540,0 280.0			110,0 500,0 240,0	154,0 650,0 320,0	155,0 626,0 313,0	123,0 476,0 228,0	125,0 500,0 240,0	125,0 504,0 233,0	117,0 502,0 242,4	126,0 502,0 252,0	120,0 470,0 230,0		120,0 489,0 246.0	125,0 500,0 250,0	126,0 502,0 241,0	13 33 19	51 51 51
Chromium as Cr in µg/l	1 2 3	1060 2110 452.0		1248 2495 413.0	1268 2674 515.0	1156 2357 314.0	2910 366,0 1280		1208 2497 424.0	1155 2349 397.0		1200 2500 60.00			1100 2400 340.0	1591 3301 512.0	1581 3177 611.0	1103 2328 30.00	1190 2405 385.0	1210 2450 342.0	1189 2418 327.3	1203 2413 550.0	1120 2320 370.0		1174 2385 287.0	1200 2400 600.0	1191 2413 397.0	52 99 103	51 51 51
Cobalt as Co in µg/l	1 2 3	402,0 798,5 195,5		377,0 797,0 168,0		380,0 771,0 184,0	369,0 762,0 126,0		405,0 801,0 200,0	385,0 769,0 192,0		450,0 850,0 220,0			380,0 780,0 190,0	544,0 1082 240,0	534,0 1060 245,0	386,0 769,0 196,0	410,0 760,0 195.0	392,0 796,0 188,0	437,4 855,0 210,5	395,0 800,0 194,0	370,0 740,0 190,0		398,0 797,0 200.0	400,0 800,0 200,0	397,0 797,0 195.0	18 39 10	48 48 48
Copper as Cu in µg/l	1 2 3	379,0 1185 531.0	311,0	317,0 1288 388.0		306,0 1206 551,0	884,0 731,0 517.0		336,0 1203 363.0	328,0 1247 523.0		350,0 1200 520.0			290,0 1200 510,0	427,0 1643 795.0	410,0 1573 773.0	324,0 1143 305.0	320,0 1170 515.0	359,0 1290 425.0	352,3 1382,0 601.0	306,0 1196 589.0	290,0 1090 380.0		324,0 1205,0 464.0	300,0 1200 600.0	322,0 1205 490.0	24 62 117	54 53 53
Iron as Fe in μg/l	1 2 3		1010 2546 422.0	1154 2774 439.0		1086 2472 338.0	2150 1360 987.0		1171 2628 454.0	1128 2614 481.0		1300 2600 30.00			660,0 1730 150,0	1491 3393 505.0		941,0 2293 37,00	1120 2410 465.0	1070 2660 440.0	1099 2725 375.7	1285 2520 660.0	1030 2340 375.0		1111 2540 416.0	1250 2500 625.0	1099 2471 438.5	147 120 94	53 54 54
Lead as Pb in µg/l	1 2 3	414,5 848,0 499,0		124,0 604,0 185.0		169,0 624,0 207,0	675,0 255,0 193,0		109,0 555,0 196,0	161,0 615,0 199,0		150,0 616,0 16,00			120,0 490,0 190,0	192,0 766,0 315,0		123,0 526,0 24,0	175,0 520,0 230,0	150,0 582,0 167,0		169,0 603,0 292,0	170,0 500,0 140,0		156,0 577,0 162.0	150,0 600,0 300,0	154,0 586,0 192,5	30 45 65	50 50 50
Manganese as Mn in µg/l	1 2 3	248,0 1010 483,5	281,0 1072 523,0	246,0 1038 489,0	224,0 1104 507,0	0 247,0 983,0 0 481,0	854,0 408,0 213,0		282,0 1040 551,0	280,0 1049 530,0		290,0 1000 560,0			240,0 990,0 500,0	346,0 1308 651,0	332,0 1304 655,0	271,0 940,0 470,0	260,0 980,0 495,0	286,0 1060 531,0	279,7 1026 519,0	271,0 1015 511,0			278,0 1024,0 519,0	250,0 1000 500,0	270,5 1003 493,5	17 54 36	56 56 56
Mercury as Hg in µg/l	1 2 3	13,50	1,900 7,800 8,800				6,000 6,000 6,000		1,400 7,600 2,500			0,770 1,540 0,950			0,000 0,000 0,000			2,400 9,800 1,900		10,00 15,00 7,000			0,270 10,72 0,350			3,000 9,000 6,000	2,400 8,800 2,500	3 4 3	15 16 15
Molybdenum as Mo in µg/l	1 2 3	148,5 303,0 250,0		74,00 267,0 187,0		83,00 275,0 163,0	189,0 425,0 302,0			98,00 306,0 199,0		80,00 290,0 150,0			80,00 250,0 180,0	106,0 377,0 194,0		75,00 250,0 45,00		69,00 263,0 194,0	52,80 247,6 171,5	99,00 287,0 199,0				100,0 300,0 200,0	89,7 275,0 188,5	14 24 26	29 30 30
Nickel as Ni in µg/l	1 2 3	1055 2025 504,0		1064 2337 531,0		1068 2150 529,0	1180 2300 567,0		1094 2202 577,0	1153 2294 577,0		1700 3500 900,0			1070 2190 550,0	1461 2964 734,0	1475 2947 728,0	1068 2147 540,0	1155 2215 630,0	1060 2200 556,0	1156 2289 573,0	1094 2189 549,0	1060 2150 570,0		1113 2231 553,0	1100 2200 550,0	1108 2201 554,8	62 111 33	50 50 50
Silicon as Si in µg/l	1 2 3		1890 1903 1854	1954 1745 3131		1883 1790 1798	1661 1503 1540		1782 1745 1692			1900 1800 1800			1150 1130 1130	2227 2211 2201		2080 2003 2000	1755 1700 1690	1950 1810 1830		1721 1697 1699				-	1746 1744 1691	208 178 184	30 30 30
Strontium as Sr in µg/l	1 2 3	185.0 353,0 265,0		178,0 347,0 264,0		174,0 327,0 251,0	322,0 338,0 244,0		151,0 325,0 258,0	202,0 380,0 292,0		150,0 280,0 225,0			160,0 330,0 250,0	229,0 443,0 334,0	236.0 451,0 319,0	175,0 371,0 293,0		184,0 339,0 261,0		178,0 330,0 255,0			177.0 330,0 252,0	80.00 240.0 160.0	176.5 330,0 255,0	13 16 18	34 33 33
Vanadium as V in µg/I	1 2 3	104.0 395,0 177,0		90,00 390,0 152,0		76,00 404,0 108,0	329.0 287,0 109,0		63.00 392,0 143,0	91.00 431,0 155,0		90.00 430,0 27,0			70,00 390,0 120,0	114,0 553,0 171,0	115.0	82,0 394,0 32,0		70,00 415,0 128,0		95,00 398,0 191,0				100.0 400.0 200,0	86,0 399,5 143,5	18 39 40	28 28 28
Zinc as Zn in µg/l	1 2 3	540,5 504,5 309,0	474,0 448,0	424,0 386,0 277,0		452,0 423,0 327,0	481.0 418,0 323,0		454,0 402,0 326,0	463.0 410,0 352,0		540,0 480,0 390,0			440.0 410,0 340,0	627.0 554,0 448,0	546,0 426,0	500,0 484,0 320,0	425,0 395,0 315,0	572,0 478,0 362,0	417.0 383,2 308,2	469,0 432,0 353,0	410.0 375,0 300,0		457.0 429,0 340,0	40,00 120,0 80,00	460.0 425,5 326,0	52 43 40	53 54 53
Arsenic as As in µg/l	4 5 6		2,100 15,00 8,200				5,000 18,00 11,00					5,900 14,00 9,100			20,00 10,00			1,000 12,00 5,000		11,00 25,00 16,00						3,000 15,00 9,000	4,415 14,50 8,835	3 2 1	12 14 12
Selenium as Se in µg/l	4 5 6	121.0 103,5 93.00	7,900 13,00				10,00 16,00 7,000		8,200 16,60 16 10			8,900 13,00 7,900			20,00			6,500 10,90		18.00 20,00 11.00						7,500 12,50 5,000	8,900 15,10 7,000	3 6 5	15 17 15

SOUTH AFRICAN BUREAU OF STANDARDS - WATER-CHECK PROGRAMME

TABLE A

ANALYTICAL RESULTS

GROUP 1																		G	ir 1 (cor	nt)					P	age 5 of	13	
Determinand		B38	B39	B41	B42	B45	B49A	B49B	B63	B68	B69A	B69B	B69C	B70	B71	B73	B74	B76	B78	B79	B81	B86	B88	B91	Spike ug/I	Median	Robust SD	n
Aluminium as Al in µg/l	1 2 3	650,0 1330 300,0	871,0 1829 149.0		754,0 2518 30.00		940,0 1450 470,0	903,0 1759 260,0	780,0 1535 224.0	797,0 1515 312.0	858,0 1635 273.0				752,7 1497 173.4	863,0 1812 117.0	353,0 1490 317.0	890,0 1800 270,0				724,0 1458 199.0			750,0 1500 375,0	802,0 1552 257.0	105 151 85	48 48 47
3arium as Ba in µg/l	1 2 3		176,0 483,0 305,0		190,0 487,0 339,0			155,0 469,0 305,0		200,0 480,0 337,0	191,0 472,0 322,0				186,4 474,6 328,5	207,0 519,0 345,0	190,0 490,0 331,0	200,0 510,0 350,0							150,0 450,0 300,0	190,0 488,0 327,0	15 27 18	34 34 34
3eryllium as Be in µg/l	1 2 3				48,00 146,0 50,0			43,00 168,0 51,00	50,00 150,0 63,00	43,00 133,0 80,00					49,97 151,1 81,79										50,00 150,0 100,0	50,00 150,0 81,79	3 7 14	25 25 25
3oron as B μg/l	1 2 3				518,0 1868 993,0			599,0 1977 1059							536,0 1831 943,0		261,0 1810 933,0	620,0 2230 1160							500,0 2000 1000	541,0 2005 1038	53 162 83	29 30 30
Cadmium as Cd in µg/l	1 2 3		140,0 601,0 252,0		128,0 496,0 253,0		120,0 500,0 240,0	113,0 509,0 200,0	125,0 500,0 171,0	110,0 453,0 221,0	128,0 502,0 245,0				112,0 469,0 217,0	135,0 510,0 265,0	109,0 439,0 206,0	140,0 540,0 260,0				122,0 195,0 241,0			125,0 500,0 250,0	126,0 502,0 241,0	13 33 19	51 51 51
Chromium as Cr in μg/l	1 2 3		1237 2583 275,0		1187 2388 27,00		1410 2990 480,0	1218 2489 384,0	1160 2402 371,0	1187 2464 433,0	1162 2385 378,0				1191 2444 330,0	1216 2496 239,0	1080 2190 433,0	1190 2480 350,0				1131 2348 320,0			1200 2400 600,0	1191 2413 397,0	52 99 103	51 51 51
Cobalt as Co in µg/l	1 2 3		465,0 983,0 238,0		397,0 790,0 198,0		350,0 720,0 140,0	401,0 800,0 193,0	395,0 779,0 188,0	397,0 777,0 216,0	404,0 804,0 198,0				407,7 804,7 200,0	414,0 829,0 217,0	370,0 716,0 169,0	420,0 850,0 210,0				386,0 768,0 195,0			400,0 800,0 200,0	397,0 797,0 195,0	18 39 10	48 48 48
Copper as Cu in µg/l	1 2 3		304,0 1285 255,0		321,0 1188 328,0		330,0 1180 400,0	323,0 1249 339,0	309,0 1210 340,0	341,0 1179 581,0	324,0 1217 449,0				351,8 1335 463,6	346,0 1275 552,0	289,0 1120 436,0	330,0 1270,0 570,0				332,0 1276 441,0			300,0 1200 600,0	322,0 1205 490,0	24 62 117	54 53 53
ron as Fe in µg/l	1 2 3	1250 2540 670,0	871,0 2601 199,0		1279 2281 24,00		1100 2450 500,0	1109 2473 425,0	861,0 2384 425,0	1223 2563 659,0	1004 2543 391,0				943,7 2455 409,8	1003 2216 313,0	930,0 2230 438,0	960,0 2570 250,0				1006 2499 368,0			1250 2500 625,0	1099 2471 438,5	147 120 94	53 54 54
Lead as Pb in µg/l	1 2 3		123,0 625,0 123,0		109,0 688,0 20,00		190,0 590,0 230,0	162,0 612,0 170,0	98,00 577,0 188,0	179,0 608,0 258,0	154,0 593,0 192,0				161,0 594,0 23,00	91,00 525,0 116,0	104,0 442,0 107,0	150,0 580,0 200,0				137,0 565,0 166,0			150,0 600,0 300,0	154,0 586,0 192,5	30 45 65	50 50 50
Manganese as Mn in µg/l	1 2 3	250,0 930,0 480,0	287,0 1111 539,0		269,0 999,0 505,0		260,0 1010 490,0	289,0 1064 523,0	272,0 974,0 484,0	90,0 849,0 303,0	267,0 1010 495,0				270,9 1005 508,9	288,0 1051 539,0	246,0 918,0 456,0	280,0 1070 530,0				259,0 971,0 484,0			250,0 1000 500,0	270,5 1003 493,5	17 54 36	56 56 56
Mercury as Hg in µg/l	1 2 3		8,000 10,00 6,000					<100.0 <100.0 <100.0														4,500 7,500 1,500			3,000 9,000 6,000	2,400 8,800 2,500	3 4 3	15 16 15
Molybdenum as Mo in µg/l	1 2 3		7,000 24,00 19,00					57,00 259,0 160,0	103,0 275,0 219,0	133,0 305,0 228,0					92,03 267,4 161,8		77,00 270,0 178,0					82,00 273,0 192,0			100,0 300,0 200,0	89,7 275,0 188,5	14 24 26	29 30 30
Nickel as Ni in µg/l	1 2 3		1197 2450 590,0		1102 2182 546,0		1060 2100 530,0	1148 2287 563,0	1086 2196 503,0	1070 2174 526,0	1121 2232 549,0				1120 2250 563,3	1158 2312 594,0	1010 2020 496,0	1160 2340 560,0				1136 2221 572,0			1100 2200 550,0	1108 2201 554,8	62 111 33	50 50 50
Silicon as Si in µg/l	1 2 3		1657 1659 1606		1650 1617 1603			1897 1843 1856		1662 1596 1649					1667 1649 1627		873,0 1630 1640								-	1746 1744 1691	208 178 184	30 30 30
Strontium as Sr in µg/l	1 2 3		165.0 349,0 275,0		181.0 327,0 257,0			149.0 316,0 276,0	181.0 335,0 255,0	213.0 378,0 298,0	179.0 326,0 250,0				175.5 331,0 257,0										80.00 240.0 160.0	176,5 330,0 255,0	13 16 18	34 33 33
Vanadium as V in µg/l	1 2 3		68,00 426,0 107,0		82.00 373,0 23,00			25,00 415,0 108,0	72,00 421,0 145,0						78,70 401,0 131,7		63,00 368,0 144,0					78,00 392,0 127,0			100.0 400.0 200,0	86,0 399,5 143,5	18 39 40	28 28 28
Zinc as Zn in µg/l	1 2 3		557,0 529,0 363,0		472,0 427,0 343,0		460.0 450,0 300,0	483.0 439,0 305,0	450.0 425,0 264,0		461.0 426,0 333,0				446.0 419,5 333,1	491.0 455,0 339,0	410,0 380,0 285,0	500.0 450,0 370,0				427,0 383,0 316,0			40.00 120,0 80,00	460,0 425,5 326,0	52 43 40	53 54 53
Arsenic as As in µg/l	4 5 6		14,00					6,000 14,00 9,000									1,260 11,00 8,670								3,000 15,00 9,000	4,415 14,50 8,835	3 2 1	12 14 12
Selenium as Se in µg/l	4 5 6		1,000					<10.00 31,00 <10.00									9,230 15,60 4,630					1,800 3,500 1,500			7,500 12,50 5,000	8.900 15,10 7.000	3 6 5	15 17 15

TABLE A

ANALYTICAL RESULTS

Okt 07

GROUP 1																				(Gr 1 (cor	nt)				P	age 6 of	13	
Determinand		B93	B94	B99	B100	B101	B103	B104	B105	B107	B108	B109	B112	B113	B115	B116	B117	B121a	B121c	B123	B124	B125	B126	B127	B128	Spike ug/l	Median	Robust SD	'n
Aluminium as Al in µg/l	1 2 3			700,0 1600 100,0	790,0 1468 257,0		98,40 1776 445,9	873,0 1643 261,0			809,0 1566 220,0	730,0 1450 200,0	890,0 1538 280,0	801,0 1608 234,3		1100 2207 269,0					786,0 1505 326,0				776,0 1567 242,0	750,0 1500 375,0	802,0 1552 257,0	105 151 85	48 48 47
Barium as Ba in µg/l	1 2 3				184,0 487,0 324,0						203,0 526,0 357,0			182,3 473,5 325,0		181,0 469.0 314,0									185,0 471,0 326,0	150,0 450.0 300,0	190,0 488,0 327,0	15 27 18	34 34 34
Beryllium as Be in µg/l	1 2 3				50,00 146,0 83,00						53,00 163,0 83,00			50,89 152,8 74 10											57,00 169,0 92,00	50,00 150.0 100.0	50,00 150,0 81,79	3 7 14	25 25 25
Boron as B µg/l	1 2 3				549,0 1863 960.0		529,0 2030 1024				511,0 1882 975.0			512,5 1909 968 9		487,0 1930 971.0									541,0 1998 1043	500,0 2000 1000	541,0 2005 1038	53 162 83	29 30
Cadmium as Cd in µg/l	1 2 3				120,0 513,0 243.0	130,0 540,0 260,0	114,6 505,1 243,6	128,0 524,0 254,0	146,0 582,0 280,0		135,0 538,0 266,0	134,0 512,0 251.0	122,0 501,0 230,0	126,9 501,2 200,9		108,0 417,0 205,0		118,0 452,0 189,0		150,7 541,5 276,2	142,0 503,0 253,0				127,0 527,0 213,0	125,0 500,0 250,0	126,0 502,0 241.0	13 33 19	5
Chromium as Cr in µg/l	1 2 3			1250 2700 620.0	1194 2500	1230 2370 560.0	1192 2465 403 1	1193 2400 425.0	1172 2348		1302 2594 411.0	1351 2400 343.0	1199 2399 305 0	1190 2473 391.0		200,0		2189 4272 926.0		1162 2385 205.8	200,0				1171 2402 123.0	1200 2400	1191 2413 397.0	52 99	5
Cobalt as Co in µg/l	1 2 2			020,0	386,0 803,0	400,0 790,0	406,3 796,3	399,0 797,0	422,0 823,0 208.0		397,0 829,0	403,0 799,0	385,0 913,0	393,6 791,3				380,0 738,0		403,6 802,6	432,0 817,0				406,0 821,0	400,0 800,0	397,0 797,0	103 18 39	48
Copper as Cu in µg/l	1 2 2			310,0 1180	333,0 1257	330,0 1190	263,2 1177 242.7	316,0 1168	292,0 1178		329,0 1271	316,0 1242	348,0 1210	305,6 1193		320,0 1214 204.0		290,0 1154		303,3 1239	327,0 1217 502.0				335,0 1305 251.0	300,0 1200	322,0 1205	24 62	54
lron as Fe in µg/l	1 2 2			1550 2600 750.0	1046 2469	1260 2470	1149 2502	439.0 1043 2500	1144 2324		874,0 2410	1198 2602	913,0 2024	855,9 2497		962,0 2406		1041 2466		1137 2444	1267 2450				1150 2486	1250 2500	1099 2471	147 120	53
Lead as Pb in µg/l	1 2 3			200,0 570,0 310,0	490,0 150,0 595,0 200,0	126,0 600,0 253.0	350,8 774,4 538 5	476,0 166,0 546,0 173,0	438,0 178,0 604,0 274,0		160,0 627,0 181.0	454,0 154,0 599,0 212,0	117,0 511,0 185,0	429,1 172,1 603,6 213,9		134,0 498,0 120,0		854,0 1019 438.0		50,14 520,8 141 3	172,0 553,0 249,0				438,0 147,0 571,0 67,00	150,0 600,0	438,5 154,0 586,0 192,5	30 45 65	50
Manganese as Mn in µg/l	1 2 3			280,0 940,0 470,0	200,0 241,0 997,0 440,0	270,0 1030 480.0	245,4 972,8 464 9	267,0 1013 510.0	290,0 1058 516.0		225,0 1062 475.0	267,0 964,0	260,0 919,0	260,3 1005		250,0 925,0 456,0		254,0 971,0 461.0		275,6 1030	267,0 970,0 487.0				271,0 1000 520,0	250,0 1000	270,5 1003	17 54 36	56
Mercury as Hg in µg/l	1 2 3			470,0		400,0	146,5 133,4 183,0	510,0	1,700 7,350 2,150		475,0	432,0	470,0	400,0		400,0		401,0		524,4					520,0	3,000 9,000 6,000	2,400 8,800 2,500	3 4 3	15
Molybdenum as Mo in µg/l	1 2 3				92,00 288,0 181.0		80,80 304,2 223,5		2,100		90,00 307,0 177,0			89,74 277,9 201.0											88,00 262,0 156,0	100,0 300.0 200.0	89,7 275,0 188,5	14 24 26	29
Nickel as Ni in µg/l	1 2 3			1160 2040 600.0	1101 2194 493.0	1140 2240 560.0	1129 2298 582.6	1148 2280 567.0	1294 2452 662 0		1157 2327 576 0	1100 2190 505 0	1022 2259 550.0	1144 2260 565 9				1013 1995 519.0		1098 2179 553 5	1056 2055 504.0				1078 2173 549.0	1100 2200 550.0	1108 2201 554.8	62 111 33	50 50
Silicon as Si in µg/l	1 2 3			000,0	1651 1609 1646	500,0	1688 1742 1710	507,0	1737 1825 1792		1685 1679 1611	303,0	1839 1944 1999	738,5 731,6 730,9				010,0		000,0	1534 1468 1458				040,0	-	1746 1744 1691	208 178 184	30
Strontium as Sr in µg/l	1 2 3				154,0		21,50 21,70	169.0 322,0	1752		1011		1999	185,5 347,3 264,8		173.0 327,0					1430				147,0 276,0	80.00 240.0	176,5 330,0	13 16 18	34
Vanadium as V in µg/l	1 2 3				77.00 410,0 150.0		10,50	240,0			91.00 435,0 160.0			96,4 426,9 171.8		240,0									91,00 398,0 54,00	100.0 400.0 200.0	86.0 399,5 143.5	18 39 40	28
Zinc as Zn in µg/l	1 2 3			480.0 430,0 370.0	462.0 421,0 300.0	430.0 380,0 320.0	422,9 440,7 315 7	470.0 440,0 358.0	508.0 466,0 370.0		486.0 442,0 354.0	500,0 453,0 372,0	543.0 467,0 367.0	407.7 377,7 272.7		342.0 311,0 241.0		380.0 360,0 267.0		0.410 0,350 0.260	618.0 308,0 148.0				447,0 412,0 325,0	40,00	460.0 425,5 326.0	52 43 40	53
Arsenic as As in µg/l	4 5 6			570,0	<0.008 14,90 7,500	520,0	115,2 138,8 158,7	0.00.0	570.0		0.70	512,0	001,0	212,1		241.0		201.0		0,200	140,0				5,000 16,00 8,000	3,000	4,415	3	12
Selenium as Se in µg/l	4 5 6				10,50 15,10 7,450		55,70 57,50 60,20																		0,000	7,500 12,50 5.000	8,900 15,10 7,000	- 3 6 5	15

SOUTH AFRICAN BUREAU OF STANDARDS - WATER-CHECK PROGRAMME

TABLE A

ANALYTICAL RESULTS

Okt 07

GROUP 1																				Page 7	of 13	
Determinand		B129	B130	B131	B132 A	B132B	B135	B138	B139	B141	B142	B143	B144	B147	B148	B149	B152	B153	Spike ug/l	Median	Robust SD	n
Aluminium as Al in µg/l	1 2 3	574,0 1349 150,0			1082 1659 392,0	1082 1659 392,0	831,0 1695 226,0	863,0 1689 373,0		937,0 1728 275,0		700,0 1300 300,0			685,2 1423 262,3	503,0 1168 101,0			750,0 1500 375,0	802,0 1552 257,0	105 151 85	48 48 47
Barium as Ba in μg/l	1 2 3	180,0 489,0 244,0			196,0 506,0 334,0	196,0 506.0 334,0	180,0 432,0 299,0	168,0 453,0 317,0		212,0 526,0 368,0						199,0 497,0 339,0			150,0 450.0 300,0	190,0 488,0 327,0	15 27 18	34 34 34
Beryllium as Be in µg/l	1 2 3						45,70 137,0 83,90	40,60 127,0 83,70								44,00 151,0 89,00			50,00 150,0 100,0	50,00 150,0 81,79	3 7 14	25 25 25
Boron as B µg/l	1 2 3	382,0 1699 781,0			140,0 2061 1063	140,0 2061 1063	2176 1065	405,0 1590 813,0								559,0 2075 1048			500,0 2000 1000	541,0 2005 1038	53 162 83	29 30 30
Cadmium as Cd in µg/l	1 2 3	84,00 374,0 126,0		160,0 480,0 250,0	140,0 523,0 217,0	130,0 498,0 243,0	127,0 472,0 236,0	104,0 415,0 214,0							113,6 492,8 237,9	126,0 505,0 250,0			125,0 500,0 250,0	126,0 502,0 241,0	13 33 19	51 51 51
Chromium as Cr in µg/l	1 2 3	804,0 1861 60,00			1184 2469 394,0	1244 2632 537.0	1110 2190 481,0	1131 2330 501,0		1277 2589 416,0					1169 2370 448,0	1363 2606 630,0			1200 2400 600,0	1191 2413 397,0	52 99 103	51 51 51
Cobalt as Co in µg/l	1 2 3				412,0 825,0 200.0	380,0 755,0 181.0	373,0 694,0 180.0	354,0 826,0 164,0							384,7 776,1 193,3	370,0 758,0 192,0			400,0 800,0 200,0	397,0 797,0 195.0	18 39 10	48 48 48
Copper as Cu in µg/l	1 2 3	225,0 952,0 119,0		260,0 1230 500,0	331,0 1265 368.0	312,0 1142 533.0	302,0 1070 517.0	270,0 981,0 420,0		353,0 1369 411,0					302,2 1152 564,7	319,0 1205 581.0			300,0 1200 600.0	322,0 1205 490.0	24 62 117	54 53 53
lron as Fe in μg/l	1 2 3	642,0 1752 33.00		850,0 1960 420,0	1180 2460 540.0	1180 2460 540.0	936,0 2400 434,0	1201 2471 620.0		1160 2725 482.0		900,0 2000 380,0			1088 2443 510.4	2617 701.0			1250 2500 625.0	1099 2471 438.5	147 120 94	53 54 54
Lead as Pb in µg/l	1 2 3	86,00 457,0 10,00			163,0 605,0 202,0	189,0 661,0 267,0	153,0 527,0 244,0	155,0 567,0 143,0		130,0 611,0 183,0					147,3 564,0 226,4	148,0 522,0 230,0			150,0 600,0 300,0	154,0 586,0 192,5	30 45 65	50 50 50
Manganese as Mn in µg/l	1 2 3	201,0 798,0 319,0		210,0 850,0 420,0	280,0 990,0 470.0	280,0 990,0 470.0	271,0 959,0 452,0	281,0 1022 525,0		291,0 1071,0 536,0		270,0 890,0 470.0			241,6 909,9 457,0	301,0 1021 514,0			250,0 1000 500.0	270,5 1003 493.5	17 54 36	56 56 56
Mercury as Hg in µg/l	1 2 3						2,610 11,40 3,220	1,500 6,500 0,870											3,000 9,000 6,000	2,400 8,800 2,500	3 4 3	15 16 15
Molybdenum as Mo in µg/	1 1 2 3				101,0 302,0 227,0	101,0 302,0 227,0	93,70 265,0 171,0	81,00 259,0 190,0		90,30 300,0 201,0						272,0 178,0			100,0 300.0 200.0	89,7 275,0 188,5	14 24 26	29 30 30
Nickel as Ni in µg/l	1 2 3	829,0 1731 327,0			1123 2272 571,0	1124 2053 563.0	1060 1950 503,0	912,0 1904 467,0							1084 2152 545,7	1116 2142 530,0			1100 2200 550.0	1108 2201 554,8	62 111 33	50 50 50
Silicon as Si in µg/l	1 2 3	1087 1052 1034			1900 2400 1500	1900 2400 1500	2104 2102 2076			1835 1759 1756									-	1746 1744 1691	208 178 184	30 30 30
Strontium as Sr in µg/l	1 2 3	151,0 299,0 188,0			177,0 322,0 240,0	177.0 322,0 240.0	176.0 308,0 234.0	158.0 319,0 244.0		188,0 350,0 269,0						172,0 329,0 241,0			80.00 240.0 160.0	176.5 330,0 255.0	13 16 18	34 33 33
Vanadium as V in µg/l	1 2 3	4 -			155,0 480,0 227,0	155.0 480,0 227.0	94,80 364,0 169,0	76.00 488,0 170.0								301,0 120,0			100.0 400.0 200.0	86,0 399,5 143,5	18 39 40	28 28 28
Zinc as Zn in µg/l	1 2 3	406.0 344,0 274,0		360.0 370,0 280,0	498.0 420,0 321,0	460.0 428,0 336,0	353.0 311,0 254,0	444,0 405,0 329,0		493.0 451,0 356,0		380,0 360,0 280,0			441,7 399,1 334,4	502,0 454,0 375,0			40,00 120,0 80,00	460.0 425,5 326,0	52 43 40	53 54 53
Arsenic as As in µg/l	4 5 6						3.830 14,10	3,100 13,00 8,000											3,000 15,00 9,000	4,415 14,50 8,835	3 2 1	12 14 12
Selenium as Se in µg/l	456						9,310 14,30	3,200 9,300 2,200								7,000 12,00 5,000			7,500 12,50 5,000	8,900 15,10 7,000	3 6 5	15 17 15

SOUTH AFRICAN BUREAU OF STANDARDS - WATER-CHECK PROGRAMME TABLE B

Z-SCORE VALUES GROUP 1

Okt 07

																G	ir 1 (con	nt)				Pa	ge 8 of	13	
Determinand		B1	B3	B5	B7	B8	B9A	B9B	B10	B11A	B11B	B14	B16	B16a	B19	B21A	B21B	B22	B23	B25	B30	B31	B33	B34	B36
Aluminium as Al in µg/l	1 2 3	-	-	-0,76 -0,19 -0,54	-	-0,10 0,20 -0,64	0,01 -0,67 0,99		0,05 -0,19 -0,04	0,53 0,93 0,19	-	0,08 -1,00 -2,69		-	-2,03 -1,14 -2,92	1,85 2,97 1,23	1,50 2,04 1,44	-0,48 -0,34 -2,59	0,65 -0,21 -0,73	0,67 0,32 -0,25	-2,19 -1,36 -	-0,19 -0,24 1,17	-	-	0,02 0,15 -0,49
Barium as Ba in µg/l	1 2 3	-0,91 0,92 -0.03		0,67 0,94 0.96	-	-1,55 -0,75 -0,73	16,45 -0,67 -2.02	-	2,02 2,29 -1.12	1,82 2,66 3.43		-0,34 0,07 0,45			-1,35 -0,67 -0,39	6,47 10,71 11.13	-	-2,97 -2,02 -1.35	-	0,07 0,04 0.00	-	0,13 -0,19 0.51	-	-	-0,34 0,11 0.00
Beryllium as Be in µg/l	1 2 3	-4,72 -1,42 0,67		-0,34 -0,13 -1,45	-	0,00 0,40 0,67	20,23 -4,86 -0,31	-	0,34 -0,13 -1,67	0,67 0,81 0,82	-	0,67 0,67 -0,13			0,00 0,00 -0,86	1,01 5,39 2,21	-1,01 4,32 1,04	-5,39 -4,05 -2,62	0,00 0,00 0,60	0,34 0,54 -0,57	-	-	-	-	-
Boron as B µg/l	1 2 3	-2,16 0,43 0.20		0,36 0,53 0.59	-	0,94 0,04 0.12	17,59 -3,10 -1.57	-	0,51 0,12 0.25	0,66 0,80 0.84		0,17 -0,03 -0.46			-3,95 -4,10 -3,47	4,40 4,66 4,50	4,16 3,18 4.00	-0,67 -3,91 -1,34	-	0,58 0,03 0.39	-	0,47 0,04 -0.06	-	-	
Cadmium as Cd in µg/l	1 2 3	0,86 1,56 1,17	-	-0,67 0,46 -0,57	-	-0,82 -0,40 -0,36	26,37 -8,83 -7,26		1,42 2,30 -0,52	0,52 0,92 1,24	-	1,05 1,16 2,02		-	-1,20 -0,06 -0,05	2,10 4,54 4,10	2,17 3,80 3,73	-0,22 -0,80 -0,67	-0,07 -0,06 -0,05	-0,07 0,06 -0,41	-0,67 0,00 0,07	0,00 0,00 0,57	-0,45 -0,98 -0,57	-	-0,45 -0,40 0,26
Chromium as Cr in µg/l	1 2 3	-2,52 -3,05 0,53		1,10 0,83 0,15	1,48 2,63 1,14	-0,67 -0,56 -0,80	33,12 -20,60 8,54	-	0,33 0,85 0,26	-0,69 -0,64 0,00	-	0,17 0,88 -3,26			-1,75 -0,13 -0,55	7,71 8,94 1,11	7,51 7,69 2,07	-1,70 -0,86 -3,55	-0,02 -0,08 -0,12	0,37 0,37 -0,53	-0,04 0,05 -0,67	0,23 0,00 1,48	-1,37 -0,94 -0,26	-	-0,33 -0,28 -1,06
Cobalt as Co in µg/l	1 2 3	0,28 0,04 0.05	-	-1,11 0,00 -2.60	-	-0,94 -0,67 -1,06	-1,55 -0,91 -6.65	-	0,44 0,10 0,48	-0,67 -0,73 -0,29		2,94 1,37 2,41			-0,94 -0,44 -0,48	8,16 7,39 4.33	7,60 6,82 4.82	-0,61 -0,73 0,10	0,72 -0,96 0.00	-0,28 -0,03 -0.67	2,24 1,50 1,49	-0,11 0,08 -0,10	-1,50 -1,48 -0,48	-	0,06 0,00 0,48
Copper as Cu in µg/l	1 2 3	2,40 -0,32 0.35	-0,46 - -	-0,21 1,33 -0.87	-	-0,67 0,02 0.52	23,69 -7,61 0,23	-	0,59 -0,03 -1.08	0,25 0,67 0,28		1,18 -0,08 0,26			-1,35 -0,08 0,17	4,43 7,03 2,60	3,71 5,91 2,42	0,08 -1,00 -1.58	-0,08 -0,56 0.21	1,56 1,36 -0.55	1,28 2,84 0.95	-0,67 -0,14 0.85	-1,35 -1,85 -0.94	-	0,08 0,00 -0.22
Iron as Fe in μg/l	1 2 3		-0,61 0,63 -0,18	0,37 2,53 0.01	-	-0,09 0,01 -1.07	7,16 -9,24 5,86	-	0,49 1,31 0,17	0,20 1,19 0.45	-	1,37 1,08 -4,36			-2,99 -6,16 -3.08	2,67 7,68 0,71		-1,08 -1,48 -4,29	0,14 -0,50 0.28	-0,20 1,58 0.02	0,00 2,12 -0.67	1,27 0,41 2,37	-0,47 -1,09 -0,68	-	0,08 0,58 -0.24
Lead as Pb in µg/l	1 2 3	8,57 5,79 4,75	-	-0,99 0,40 -0,12	-	0,49 0,84 0.22	17,14 -7,32 0.01	-	-1,48 -0,69 0.05	0,23 0,64 0,10	-	-0,13 0,66 -2,74		- - -	-1,12 -2,12 -0.04	1,25 3,98 1,90	- -	-1,02 -1,33 -2,61	0,69 -1,46 0.58	-0,13 -0,09 -0,40		0,49 0,38 1.54	0,53 -1,90 -0,81	-	0,07 -0,20 -0,47
Manganese as Mn in µg/l	1 2 3	-1,32 0,14 -0.28	0,62 1,28 0.81	-1,43 0,66 -0,12	-2,72 1,88 0.37	-1,38 -0,36 -0,34	34,22 -10,98 -7,72	-	0,68 0,69 1,58	0,56 0,86 1.00		1,15 -0,05 1.83			-1,79 -0,23 0,18	4,43 5,64 4,33	3,61 5,57 4,44	0,03 -1,15 -0.65	-0,61 -0,42 0.04	0,91 1,06 1.03	0,54 0,43 0,70	0,03 0,23 0,48		-	0,44 0,40 0,70
Mercury as Hg in µg/l	1 2 3	- 1,29 -	-0,16 -0,28 1,98				1,16 -0,77 1,10	-	-0,32 -0,33 0.00			-0,52 -2,00 -0,49		- - -	-0,77 -2,42 -0,78		-	0,00 0,28 -0,19		2,44 1,71 1.41		-	-0,68 0,53 -0,67	-	-
Molybdenum as Mo in µg/l	1 2 3	4,07 1,18 2,40	-	-1,09 -0,34 -0.06	-	-0,47 0,00 -1,00	6,87 6,32 4,44	-	-	0,57 1,31 0,41	-	-0,67 0,63 -1,50			-0,67 -1,05 -0,33	1,13 4,30 0,21		-1,02 -1,05 -5,61	-	-1,44 -0,51 0,21	-2,56 -1,15 -0.66	0,64 0,51 0,41	-	-	- -
Nickel as Ni in µg/l	1 2 3	-0,84 -1,58 -1,54		-0,70 1,22 -0,72	-	-0,63 -0,46 -0,78	1,16 0,89 0.37	-	-0,22 0,01 0.67	0,73 0,84 0.67	-	9,51 11,68 10,47		- - -	-0,60 -0,10 -0,14	5,68 6,86 5,43	5,90 6,71 5,25	-0,63 -0,49 -0,45	0,76 0,13 2,28	-0,76 -0,01 0.04	0,78 0,79 0.55	-0,22 -0,11 -0,17	-0,76 -0,46 0.46	-	0,09 0,27 -0.05
Silicon as Si in µg/l	1 2 3	-	0,69 0,90 0,89	1,00 0,01 7,83	-	0,66 0,26 0.58	-0,41 -1,35 -0.82	-	0,17 0,01 0.01	-	-	0,74 0,32 0.59			-2,86 -3,45 -3,05	2,31 2,63 2,77	-	1,60 1,46 1,68	0,04 -0,24 -0.01	0,98 0,37 0,76	-	-0,12 -0,26 0.04	-	-	-
Strontium as Sr in µg/l	1 2 3	0,66 1,41 0,56		0,12 1,04 0.51		-0,19 -0,18 -0,22	11,21 0,49 -0.62	-	-1,97 -0,31 0,17	1,97 3,07 2,08		-2,04 -3,07 -1,69		- - -	-1,27 0,00 -0,28	4,05 6,93 4,44	4,59 7,42 3.60	-0,12 2,51 2,14		0,58 0,55 0,34	- -	0,12 0,00 0.00	-	-	0,04 0,00 -0,17
Vanadium as V in µg/l	1 2 3	1,19 -0,24 0.84		0,26 -0,40 0,21	-	-0,66 0,05 -0,89	16,06 -3,71 -0.86	-	-1,52 -0,34 -0.01	0,33 0,92 0,29		0,26 0,88 -2,91			-1,06 -0,40 -0,59	1,85 4,83 0.69	1,92	-0,26 -0,27 -2,78	-	-1,06 0,40 -0,39	- -	0,59 -0,14 1,19	-	-	-
Zinc as Zn in µg/l	1 2 3	1,55 1,87 -0.42	0,27 0,56 -	-0,69 -0,88 -1,22	-	-0,15 -0,02 0.02	0,40 -0,14 -0.07	-	-0,12 -0,51 0.00	0,06 -0,33 0.65		1,54 1,30 1,60	-		-0,39 -0,33 0.35	3,22 3,02 3.05	- 2,84 2.50	0,77 1,40 -0,15	-0,67 -0,67 -0,27	2,16 1,26 0.90	-0,83 -0,95 -0,44	0,17 0,19 0.67	-0,96 -1,14 -0.65	-	-0,06 0,12 0,35
Arsenic as As in µg/l	4 5 6	-	-0,80 0,22 -0,43	-		-	0,20 1,57 1,46	-	-			0,51 -0,22 0,18	-		- 2,47 0.79	-	-	-1,18 -1,12 -2,59	-	2,28 4,72 4.83	-	-		-	-
Selenium as Se in µg/l	4 5 6	39,78 14,19 15.67	-0,35 -0,34 -0.27		- - -		0,39 0,14 0.00	-	-0,25 0,24 1,66			0,00 -0,34 0,16			0,79 4,19	- - -		-0,85 -0,67 -0,67		3,23 0,79 0,73			-		-

SOUTH AFRICAN BUREAU OF STANDARDS - WATER-CHECK PROGRAMME TABLE B

Z-SCORE VALUES GROUP 1

Okt 07

Gr 1 (cont) Page 9 of 13 B79 B81 B86 Determinand B38 B39 B41 B42 B45 B49 B49B B63 B68 B69A B69B B69C B70 B71 B73 B74 B76 B78 B88 B91 -0.21 -4.29 -1.45 0.66 -0.46 1.32 0.97 -0.05 0.54 -0.47 0.58 0.84 -0.75 Aluminium as Al in µg/l 2 3 -1,47 6,39 -0,11 1,72 1,83 -0.67 -0,24 0.55 -0,36 -0,41 1,64 -0.62 1,37 --0,51 -1,28 -2.69 2,52 0.04 -0.39 0,65 0.19 -0,99 -1,66 0,71 0,15 -0.69 -0.94 0.00 --2,36 0.67 0.07 ---0.24 1,15 0,00 0.67 ------2 Barium as Ba in µg/l -0.19-0.04-0.71 -0.30 -0.60 -0.50 1.16 0.07 0.82 _ --1.24 0,67 -1.24 0.56 -0.28 0.08 1.01 0.22 1.29 -0.67 -2,36 0,00 -2,36 -0,01 --------Beryllium as Be in µg/l 2 3 -0,54 2.43 0.00 -2.29 -0.15 ---2.33-2.25 -1.38 -0.13 0.00 -5,24 -1,20 -0,43 1,09 --0,09 1,48 --Boron as B µg/l 2 -0,84 -0.17 --1,07 1.39 ----1.14 -0.540.25 -1.26 1.47 1 1.05 0.15 -0.45 -0.97 -0.07 -1.20 0.15 -1.05 0,67 -1.27 1.05 --0.30 ----Cadmium as Cd in µg/l 23 3.03 -0,18 -0.06 0,21 -0.06 -1,50 0.00 -1,01 0.25 -1.931,16 ---9,41 -0,57 -0.05 -1.04 0,21 -1,24 1,24 -1,82 0.99 0.00 0,62 -2,13 -3.63 0,89 0,00 0,48 -2,14 4,22 0,52 -0,60 -0,08 --0,08 -0,56---0,02 ---1,16 ---Chromium as Cr in µg/l 2 1.71 -0.25 5.81 0.76 -0.11 0.51 -0.28 0.31 0.84 0.67 -0.65 --1.18 -3,58 0.80 -0.13 -0.25 0.35 -0.18 -1.530.35 -0.45 -0.74 -0.65 0,59 3,77 -2,61 0,94 0,00 0,22 -0,11 0,00 0,39 --1,50 1,28 --0,61 -----Cobalt as Co in µg/l 2 -2,10 4,82 -2,00 -0,47 -0,52 0,20 0,83 1,37 -0,18 0.08 0,18 -0,75 -2 50 4.14 0.29 -5.30 -0.19 -0.67 2.02 0.29 0.48 1.44 0.00 -0,76 0.34 0,04 -0.55 0,80 0,08 1,26 2,09 1,01 -1,39 0,34 1 --0.04----0,42 -Copper as Cu in µg/l 23 1,28 -0,40 0,71 -1.36 1,04 -0,27 0.08 -0,42 0,19 1,12 . 1,14 -0.78 -0.46 -2.01 -1.38 -0.77-1.29 -1.28 -0.35 -0.23 0.53 0.68 -0.42 1,03 0,58 -1,62 1 -1,55 1,23 -0,01 0,07 0,84 -0,65 ---1,06 -0,65 -1,15 -0,95 ---0,63 ----2 Iron as Fe in µg/I 1.09 -1.58-0.170.02 -0.72 0.77 0.60 -0.13 -2,12-2.00 0.83 -0.24 -3 2.47 -2 56 -4.43 0.66 -0.14-0.14 2 35 -0.51 -0.31 -1.34 -0.01 -2.01 -0.75 -1,02 -1,481,18 0,26 -1,84 0,82 0,00 0,23 -2,07 -1,64 -0,13 -0,56 -------Lead as Pb in µg/l 2 0.86 2.26 0.09 0.57 -0.20 0.49 0.15 0.18 -1,35 -3.18 -0.13 --0.46 -З -1.08 -2.670.58 -0.35 -0.07 1.02 -0.01 -2.63 -1.19 -1.330.12 -0.41 -1,20 -1,34 0,97 -0.09 -0,61 1,09 0,09 -10,58 -0,20 -0.03 1,03 -1,43 0,56 -0,67 -Manganese as Mn in 2 2,00 0,14 -2,84 0,14 0.05 0,90 -1,56 1,25 . -0,58 --0.06 1,14 -0.53 µg/l -0.37 1,25 0,32 -0,10 -0.26 -5,24 0,04 0.42 1.25 -1.03 1.00 -0,26 0,81 1.80 15.28 --0.67 -------Mercury as Hg in µg/l 23 0,33 -11,34 ---. ---0.36 ---_ ---14.90 1.10 -0.31-5,73 -2,27 0,92 2,99 0,16 -0,88 1 -------------0,54 -Molybdenum as Mo in ---10.58 -0.67 0.00 1.26 -0.32 -0.21 -0.08 µg/l 1.54 -1.04 -0.41 -6.63-1 11 1 19 0 14 -0,09 -0.76-0,60 0,22 0,81 0,84 1,44 0,65 -0.35 0,20 -1,57 0,46 ----Nickel as Ni in µg/l 2 3 2,24 -0,17 -0,91 0,77 -0,04 -0,24 0,28 0,44 1,00 -1,631.25 0,18 ---0.75 -1.57 0.16 1.07 -0.27 0.25 -0.87 -0,17 0.26 1.19 -1.78 0.52 -0,40 -0,38 -0,53 -0,43 -0,46 -0,72 ---4.19 ------ż Silicon as Si in µg/l -0,64 -0,47 0.56 -0.83 -0,71 -. ---_ ---0.46 -0.48 0.90 -0.23 -0.35 -0.28 З 1 --0.89 -0,35 ---2,12 0.35 2,81 0,19 ---0.08 ----------Strontium as Sr in µg/l 2 1.16 -0.18-0.86 0,31 2,94 -0.25 0.06 1.12 0.11 1.18 0.00 2.42 -0.28 0.11 -4.03 -1,52 -1,19 -0,26 ---0.93--0,48 --0,53 Vanadium as V in µg/l 2 0.75 -0,95 -0.40 0.59 ---0.05 -1.11 ---0.34 -ર -0,91 -3.01 -0.89 0.04 -0.29 0.01 -0.41 0,00 0,60 0,72 1,87 0.23 0,44 -0,19 0,02 -0,27 -0,96 0,77 -0,64 Zinc as Zn in µg/l 2 2,44 0,07 0,60 0.35 0.02 0.05 -0,10 -1,02 0,60 -0.95 -0.92 0.42 -0.65 -1.55 0.17 0,18 0.32 1.10 -0.25 -0,52 -1.02 4 0.55 -1.09 ----------5 Arsenic as As in µg/l -0,22 -0,22 -1,57 --0,11 0,11 -1,38 0,12 -2,52 -----------4 --------Selenium as Se in ug/l 5 -2.26 2,55 0.08 -1.86 -_ -0.36 0.43 1 00

SOUTH AFRICAN BUREAU OF STANDARDS - WATER-CHECK PROGRAMME TABLE B

Z-SCORE VALUES **GROUP 1**

															G	r 1 (co	nt)				Pa	ge 10 o	f 13		
Determinand		B93	B94	B99	B100	B101	B103	B104	B105	B107	B108	B109	B112	B113	B115	B116	B117	B121a	B121c	B123	B124	B125	B126	B127	B128
Aluminium as Al in µg/l	1 2 3	-		-0,98 0,32 -1,86	-0,11 -0,56 0,00	-	-6,73 1,48 2,23	0,68 0,60 0,05			0,07 0,09 -0,44	-0,69 -0,67 -0,67	0,84 -0,09 0,27	-0,01 0,37 -0,27		2,85 4,33 0,14				-	-0,15 -0,31 0,82	-	-		-0,25 0,10 -0,18
Barium as Ba in µg/l	1 2 3	-	-	-	-0,40 -0,04 -0,17					-	0,88 1,42 1,69	-		-0,52 -0,54 -0,11	-	-0,61 -0,71 -0,73	-	-	-	-		-	-	-	-0,34 -0,64 -0,06
Beryllium as Be in µg/l	1 2 3	-	-	-	0,00 -0,54 0,09			-	-	-	1,01 1,75 0,09		-	0,30 0,38 -0,56	-		-	-	-	-	-	-	-	-	2,36 2,56 0,75
Boron as B µg/l	1 2 3	-	-	-	0,15 -0,87 -0,94		-0,22 0,15 -0,17	-	-	-	-0,56 -0,76 -0,76	-		-0,53 -0,59 -0,83	-	-1,01 -0,46 -0,81		-	-	-		-		-	0,00 -0,04 0,06
Cadmium as Cd in µg/l	1 2 3	-	-	-	-0,45 0,34 0,10	0,30 1,16 0,99	-0,85 0,10 0,13	0,15 0,67 0,67	1,50 2,45 2,02	-	0,67 1,10 1,30	0,60 0,31 0,52	-0,30 -0,03 -0,57	0,07 -0,02 -2,08	-	-1,35 -2,61 -1,87		-0,60 -1,53 -2,70	-	1,85 1,21 1,82	1,20 0,03 0,62	-		-	0,07 0,77 -1,45
Chromium as Cr in µg/l	1 2 3	-	-	1,14 2,89 2,16	0,06 0,88 0,15	0,75 -0,43 1,58	0,02 0,52 0,06	0,04 -0,13 0,27	-0,37 -0,65 0,42	-	2,14 1,82 0,14	3,08 -0,13 -0,52	0,15 -0,14 -0,89	-0,03 0,60 -0,06	-		-	19,23 18,71 5,12	-	-0,55 -0,29 -0,98	-	-		-	-0,39 -0,11 -2,65
Cobalt as Co in µg/l	1 2 3	-	-	-	-0,61 0,16 -1,06	0,17 -0,18 0,48	0,52 -0,02 -0,55	0,11 0,00 0,00	1,39 0,67 1,25	-	0,00 0,83 -0,10	0,33 0,05 1,16	-0,67 3,01 -0,58	-0,19 -0,15 -0,37	-			-0,94 -1,53 -1,54	-	0,37 0,15 0,75	1,94 0,52 2,22	-	-	-	0,50 0,62 0,77
Copper as Cu in µg/l	1 2 3	-	-	-0,51 -0,40 0.68	0,46 0,83 0,46	0,34 -0,24 1.02	-2,48 -0,45 -1.26	-0,25 -0,59 -0,44	-1,26 -0,43 1,25	-	0,30 1,06 0,33	-0,25 0,59 -0.27	1,10 0,08 0.00	-0,69 -0,19 -1,41	-	-0,08 0,14 -1.59	-	-1,35 -0,82 -0.32	-	-0,79 0,55 0.12	0,21 0,19 0.87	-	-	-	0,55 1,61 -1,19
Iron as Fe in μg/l	1 2 3	-	-	3,07 1,08 3,33	-0,36 -0,01 0,55	1,10 0,00 1,94	0,34 0,26 0,34	-0,38 0,25 0,40	0,31 -1,22 -0,01	-	-1,53 -0,50 -2,33	0,67 1,09 0,17	-1,27 -3,72 -0,65	-1,66 0,22 -0,10	-	-0,93 -0,54 -0,83	-	-0,40 -0,04 1,70	-	0,26 -0,22 0,09	1,14 -0,17 1,32	-		-	0,35 0,13 0,21
Lead as Pb in µg/l	1 2 3	-	-	1,51 -0,35 1,82	-0,13 0,20 0,12	-0,92 0,31 0,94	6,47 4,17 5,36	0,39 -0,88 -0,30	0,79 0,40 1,26	-	0,20 0,91 -0,18	0,00 0,29 0,30	-1,22 -1,66 -0,12	0,60 0,39 0,33	-	-0,66 -1,95 -1,12	-	23,03 9,57 3,81	-	-3,42 -1,44 -0,79	0,59 -0,73 0,88	-		-	-0,23 -0,33 -1,95
Manganese as Mn in µg/l	1 2 3	-	-	0,56 -1,15 -0.65	-1,73 -0,10 -1,47	-0,03 0,51 -0.37	-1,47 -0,55 -0,79	-0,20 0,19 0.45	1,15 1,03 0.62	-	-2,66 1,10 -0.51	-0,20 -0,71 -0.04	-0,61 -1,54 -0.48	-0,60 0,05 0.05		-1,20 -1,43 -1.03		-0,96 -0,58 -0.89		0,30 0,50 0.85	-0,20 -0,60 -0,18		-		0,03 -0,05 0,73
Mercury as Hg in µg/l	1 2 3			-	-	-	46,27 34,29 56,61	-	-0,22 -0,40 -0,11		-	-	-	-		-	-	-		-	-				-
Molybdenum as Mo in µg/l	1 2 3	-		-	0,16 0,55 -0,29		-0,62 1,23 1.37	-	-	- - -	0,02 1,35 -0.45		-	0,00 0,12 0,49				- - -			- -				-0,12 -0,55 -1.27
Nickel as Ni in µg/l	1 2 3			0,84 -1,45 1,37	-0,10 -0,06 -1.87	0,52 0,35 0,16	0,35 0,87 0.84	0,65 0,71 0.37	2,99 2,26 3.25		0,79 1,13 0.64	-0,12 -0,10 -1,51	-1,37 0,52 -0,14	0,58 0,53 0,34			-	-1,52 -1,85 -1.08		-0,15 -0,20 -0.04	-0,83 -1,31 -1,54				-0,47 -0,25 -0,17
Silicon as Si in µg/l	1 2 3	-	-	-	-0,46 -0,76 -0,24	-	-0,28 -0,01 0,10	-	-0,04 0,46 0.55		-0,29 -0,36 -0,44	-	0,45 1,13 1.67	-4,84 -5,69 -5,22							-1,02 -1,55 -1,27				-
Strontium as Sr in µg/l	1 2 3	-	-		-1,73		-11,94 -18,90 -13,27	-0,58 -0,49 -0.67	-	-	-	-	-	0,69 1,06 0.55		-0,27 -0,18 -0,39					-		-		-2,27 -3,31 -3.88
Vanadium as V in µg/l	1 2 3	-	-		-0,59 0,24 0,16		-	-		-	0,33 1,04 0.41	-	-	0,69 0,78 0,71		-	-					-	-		0,33 -0,14 -2.24
Zinc as Zn in µg/l	1 2 3	-		0,39 0,14 1,10	0,04 -0,07 -0.65	-0,58 -1,02 -0.15	-0,71 0,39 -0.26	0,19 0,37 0,80	0,92 0,98 1,10		0,50 0,42 0,70	0,77 0,67 1.15	1,60 1,00 1,02	-1,01 -1,08 -1.33	- - -	-2,27 -2,63 -2.12	-	-1,54 -1,49 -1.47	- - -	-8,85 -9,85 -8.14	3,04 -2,70 -4.45			- - -	-0,25 -0,28 -0.02
Arsenic as As in µg/l	4 5 6	-			-1,53 0,18 -0,90		38,31 55,88 101,06	-			-	-	-		- - -	-	-		- - -	-				- - -	0,20 0,67 -0,56
Selenium as Se in µg/l	4 5 6	-	-	-	0,57 0,00 0.08	-	16,61 6,81 9.70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SOUTH AFRICAN BUREAU OF STANDARDS - WATER-CHECK PROGRAMME TABLE B

Z-SCORE VALUES GROUP 1

													Pa	<u>ge 11 of</u>	13			
Determinand		B129	B130	B131	B132 A	B132B	B135	B138	B139	B141	B142	B143	B144	B147	B148	B149	B152	B153
Aluminium as Al in µg/l	1 2 3	-2,18 -1,34 -1,27	-	-	2,68 0,71 1,60	2,68 0,71 1,60	0,28 0,95 -0,37	0,58 0,91 1,37		1,29 1,16 0,21	-	-0,98 -1,67 0,51	- - -	-	-1,12 -0,85 0,06	-2,86 -2,54 -1,85	-	-
Barium as Ba in μg/l	1 2 3	-0,67 0,04 -4,66			0,40 0,67 0,39	0,40 0,67 0,39	-0,67 -2,10 -1,57	-1,48 -1,31 -0,56		1,48 1,42 2,30	-	-		-		0,61 0,34 0,67	-	-
Beryllium as Be in µg/l	1 2 3		-				-1,45 -1,75 0,15	-3,17 -3,10 0,14		-	-					-2,02 0,13 0,53		
Boron as B µg/l	1 2 3	-2,98 -1,88 -3,09	-	-	-7,51 0,34 0.30	-7,51 0,34 0.30	- 1,05 0,33	-2,55 -2,56 -2,71	-	-	-			-		0,34 0,43 0,12		-
Cadmium as Cd in µg/l	1 2 3	-3,15 -3,92 -5,97		2,55 -0,67 0,47	1,05 0,64 -1,24	0,30 -0,12 0,10	0,07 -0,92 -0,26	-1,65 -2,67 -1,40	-	-	-	-		-	-0,93 -0,28 -0,16	0,00 0,09 0,47	-	-
Chromium as Cr in µg/l	1 2 3	-7,46 -5,56 -3,26	-		-0,13 0,56 -0,03	1,02 2,20 1,35	-1,56 -2,24 0,81	-1,16 -0,84 1,01		1,66 1,77 0,18		-		-	-0,43 -0,43 0,49	3,31 1,94 2,25		-
Cobalt as Co in µg/l	1 2 3		-		0,83 0,73 0,48	-0,94 -1,09 -1,35	-1,33 -2,67 -1,44	-2,39 0,75 -2,99		-					-0,68 -0,54 -0,16	-1,50 -1,01 -0,29		-
Copper as Cu in µg/l	1 2 3	-4,09 -4,06 -3,17	-	-2,61 0,40 0,09	0,38 0,96 -1,04	-0,42 -1,01 0,37	-0,84 -2,17 0,23	-2,19 -3,60 -0,60		1,31 2,63 -0,67	-				-0,83 -0,86 0,64	-0,13 0,00 0,78		-
Iron as Fe in μg/l	1 2 3	-3,11 -5,98 -4,33	-	-1,70 -4,25 -0.20	0,55 -0,09 1.08	0,55 -0,09 1.08	-1,11 -0,59 -0.05	0,69 0,00 1,94		0,42 2,12 0.46		-1,36 -3,92 -0.62		-	-0,07 -0,23 0,77	- 1,22 2.80		-
Lead as Pb in µg/l	1 2 3	-2,24 -2,85 -2,83	-	-	0,30 0,42 0,15	1,15 1,66 1,15	-0,03 -1,30 0,80	0,03 -0,42 -0,77		-0,79 0,55 -0,15	-	-		-	-0,22 -0,49 0,53	-0,20 -1,41 0,58		-
Manganese as Mn in µg/l	1 2 3	-4,07 -3,78 -4,80		-3,54 -2,82 -2.02	0,56 -0,23 -0.65	0,56 -0,23 -0.65	0,03 -0,80 -1,14	0,62 0,36 0.87		1,20 1,27 1,17	-	-0,03 -2,08 -0.65			-1,69 -1,71 -1.00	1,79 0,34 0.56	-	-
Mercury as Hg in µg/l	1 2 3		-	-	-	-	0,07 0,72 0,23	-0,29 -0,63 -0,51		-	-	-	- - -	-		-	-	-
Molybdenum as Mo in µg/l	1 2 3				0,78 1,14 1,50	0,78 1,14 1,50	0,27 -0,42 -0,68	-0,61 -0,67 0,06		0,04 1,05 0,49	-	-		-		- -0,13 -0,41	-	-
Nickel as Ni in µg/l	1 2 3	-4,47 -4,23 -6,90	-		0,25 0,64 0,49	0,26 -1,33 0,25	-0,76 -2,26 -1,57	-3,14 -2,67 -2,66		-				-	-0,38 -0,44 -0,27	0,14 -0,53 -0,75		-
Silicon as Si in µg/l	1 2 3	-3,16 -3,89 -3,57	-		0,74 3,69 -1,04	0,74 3,69 -1,04	1,72 2,01 2,09	-		0,43 0,09 0,35	-					-		-
Strontium as Sr in µg/l	1 2 3	-1,97 -1,90 -3,76	-		0,04 -0,49 -0,84	0,04 -0,49 -0,84	-0,04 -1,35 -1,18	-1,43 -0,67 -0,62		0,89 1,23 0,79						-0,35 -0,06 -0,79		-
Vanadium as V in µg/l	1 2 3		-	-	4,56 2,49 2,09	4,56 2,49 2,09	0,58 -1,24 0,64	-0,66 2,75 0,66		-	-		-		-	- -3,26 -0,59		
Zinc as Zn in µg/l	1 2 3	-1,04 -1,86 -1,30	-	-1,93 -1,26 -1,15	0,73 -0,09 -0,12	0,00 0,09 0,25	-2,06 -2,63 -1,80	-0,31 -0,44 0,07	-	0,64 0,63 0,75	-	-1,54 -1,49 -1,15	-	-	-0,35 -0,58 0,21	0,81 0,70 1,22	-	-
Arsenic as As in μg/l	4 5 6	-	-	-	-	-	-0,20 -0,18 -	-0,45 -0,67 -0,56	-	-	-	-	-	-	-	-	-	-
Selenium as Se in µg/l	4 5 6	-	-	-	-	-	0,15 -0,13 -	-2,02 -0,93 -0.87	-	-	-	-	-	-	-	-0,67 -0,50 -0.36	-	-
Water-Check Summary Report October 2007, Group 1

Page 12 of 13

	Table C: Statistical summary						
Determinand		Spike µg/l	Median	Robust SD	n		
Aluminium as Al in µg/l	1 2 3	750,0 1500 375.0	802,0 1552 257.0	105 151 85	48 48 47		
Barium as Ba in µg/l	1 2 3	150,0 450,0 300,0	190,0 488,0 327,0	15 27 18	34 34 34		
Beryllium as Be in µg/l	1 2	50,00 150,0	50,00 150,0	3 7	25 25		
Boron as B µg/l	3 1 2	500,0 2000	541,0 2005	53 162	25 29 30		
Cadmium as Cd in µg/l	1 2 2	125,0 500,0	126,0 502,0	13 33	51 51		
Chromium as Cr in µg/l	3 1 2	250,0 1200 2400	241,0 1191 2413	52 99	51 51 51		
Cobalt as Co in µg/l	3 1 2	600,0 400,0 800,0	397,0 397,0 797,0	103 18 39	51 48 48		
Copper as Cu in µg/l	3 1 2	200,0 300,0 1200	195,0 322,0 1205	10 24 62	48 54 53		
Iron as Fe in µg/l	3 1 2	600,0 1250 2500	490,0 1099 2471	117 147 120	53 53 54		
Lead as Pb in µg/l	3 1 2	625,0 150,0 600,0	438,5 154,0 586,0	94 30 45	54 50 50		
Manganese as Mn in µg/l	3 1 2	300,0 250,0 1000	192,5 270,5 1003	65 17 54	50 56 56		
Mercury as Hg in µg/l	3 1 2	500,0 3,000 9,000	493,5 2,400 8,800	36 3 4	56 15 16		
Molybdenum as Mo in µg/l	3 1 2	6,000 100,0 300,0	2,500 89,7 275,0	3 14 24	15 29 30		
Nickel as Ni in µg/l	3 1 2	200,0 1100 2200	188,5 1108 2201	26 62 111	30 50 50		
Silicon as Si in µg/l	3 1 2	550,0 - -	554,8 1746 1744	33 208 178	50 30 30		
Strontium as Sr in uo/l	3 1 2	80,00 240.0	1691 176,5 330.0	184 13 16	30 34 33		
Vanadium as V in ug/l	3	160,0 100,0 400.0	255,0 86,0 399.5	18 18 39	33 28 28		
Zinc as Zn in un/l	3	200,0 40,00 120.0	143,5 460,0	40 52 43	28 53		
	2 3 4	120,0 80,00 3,000	4∠5,5 326,0 4,415	43 40 3	54 53 12		
Arsenic as As in µg/l	5 6 4	15,00 9,000 7,500	14,50 8,835 8,900	2 1 3	14 12 15		
Selenium as Se in µg/l	5 6	12,50 5,000	15,10 7,000	6 5	17 15		

Lab code	Average absolute z- score	Number of tests performed			
B1	2,97	46			
B3	0,61	21			
B5	0,83	51			
B7	1,70	6			
B8	0,50	51			
B9A	6,27	60			
B10	0,61	54			
B11A	0,84	48			
B14	1,55	60			
B19	1,29	58			
B21A	4,21	51			
B21B	4,10	33			
B22	1,42	60			
B23	0,42	36			
B25	0.09	00			
D3U B21	0,98	<u>∠9</u> ∧0			
D31	0,42	40			
D33	0,69	21			
B38	0,25	30			
B30	1,10	50			
B39 B42	0.93				
B49	1 15	30			
B49B	1,10	60			
B63	0.56	42			
B68	1.39	42			
B69A	0.25	36			
B71	0.48	51			
B73	1,07	33			
B74	1,30	51			
B76	0,89	36			
B86	0,81	42			
B99	1,24	24			
B100	0,46	55			
B101	0,61	27			
B103	8,91	51			
B104	0,39	33			
B105	1,02	33			
B108	0,79	48			
B109	0,59	30			
B112	0,88	33			
B113	0,80	51			
B116	1,23	30			
B121a B100	3,80	21			
B123	1,00	21			
B129	0.76	50			
B120	3 35	30			
B123	1 71	15			
B132 A	1.01	48			
B132B	1,12	48			
B135	0,98	57			
B138	1,26	57			
B141	0,96	33			
B143	1,33	12			
B148	0,58	30			
B149	0,92	48			

Z < 2 = SATISFACTORY 2 < Z < 3 = QUESTIONABLE * Z > 3 = UNSATISFACTORY

* Note: A Z-score of an individual result > 2 (questionable) should be investigated by the participating laboratory.

Sample Results

Determinand	Sample 2007/ /	Results mg/ I	Range mg/ I	Method Reference	<u>SABS</u>
	1				Water - Check
Kjeldahl nitrogen as N in mg / l	2 *		1.0 - 10 0		
	3 *		10.0		Month:
Total phosphate as P in mg / I	1				
	2 *		10.0		
	3 *				Group 2
	1				_
Ammonia as N in mg / I	4 *		1.0 -		Lab code: B
	5 *		10.0		
Nitrate as N in mg / I	1				Due date:
	4 *		1.0 -		
	5 *		10.0		
Ortho-phosphate as P in mg / I	1				
	4 *		0.1 -		Enquiries:
	5 *		10.0		
Oxygen absorbed as O₂ in mg / I	1				Tel:
Chemical oxygen demand as O ₂ in mg / I	1				Fax:
	4 *		20.0 -	0.0 - 00.0	
	5 *		200.0		E-mail:
Dissolved organic carbon as C in mg / I	1				
	4 *				
	5 *		1		Signed:
Total organic carbon as C in mg / I	1				Comments:

NOTES:

1. Sample 1: Purified sewage effluent preserved with 1,5 ml / litre H₂SO₄ (conc).

2. * Dilution:

Samples 2, 3, 4 and 5 are synthetic water samples.

Dilute by pipetting 20 ml of the synthetic concentrate of samples

2,3,4 and 5 respectively into separate **1000 mI** volumetric flasks and dilute to volume with distilled/deionised water Use Grade A volumetric glassware.

NB: Do not correct analytical results for these dilutions.

3. Testing: Please analyse by single test on a routine basis and express results as one decimal.

4. Ranges: The range values are only valid for the diluted synthetic samples.

						2				Universität Stuttgart						
Layout of a Ruggedness Test - Example																
		Run number							Run number							
	Factor	1	2	3	4	5	6	7	8							
	Sample weigth	+	+	+	+	-	-	-	-							
	Conc. reagent 1	+	+	-	-	+	+	-	-							
	Conc. reagent 2	+	-	+	-	+	-	+	-							
	Total volume	-	-	+	+	+	+	-	-							
	Time of heating	-	+	-	+	+	-	+	-							
	Reaction	-	+	+	-	-	+	+	-							
	pH of solution	+	-	-	+	-	+	+	-							
	Analyte found	68	59	67	64	64	66	60	70							
+ = positive perturbation - = negative perturbation																
 The effect of a factor is given by: (mean of runs with +-perturbed)-(mean of runs withperturbed) 																
 In the example the effect of the time of heating is (59+64+64+60)/4 - (68+67+66+70)/4=-6 																
 The method is easy to interpret so long as only one or two of the factors 																
40 Koch, M.: Method Validation – SADCMET PT Workshop 2007 Dar es Salaam																

	A	8	Ċ	D	E	F	Ĝ	н		J	ĸ	L	M
	$c_{int} = \frac{m_{Az_2O_3} \cdot F_{Az_1Az_2O_3}}{C_{int}} + \frac{m_{Az_2O_3} \cdot F_{Az_1Az_2O_3}}{C_{int}}$	$\cdot P \cdot m$	$\mu \cdot \rho_{int} \cdot n$	l _{ss_dd}									
1	m ₃₃	$t \cdot m_{lot} \cdot K$	$\cdot m_{dl}$										
		estimated		probability		standard uncertainty		sensitivity	uncertainty				
2	parameter	value	specification	distribution	divisor	(u)	sensitivity coefficient (c.)	(c.)	(c,u)	abs			
							$m_{Az_1O_1} \cdot F_{Az_1Az_2O_1} \cdot m_{zz} \cdot \rho_{az} \cdot m_{zz_add}$						
					√3		m_{ii} , $m_{i\sigma} \cdot K \cdot m_{di}$						
- 3	Punty (P)	39,50%	0,10%	неспеск		0,00057735	E P P P C P	0,000112682	6,5057E+08	6,5057E+08	TIOT HERCK	centricate	
	mass of arsenic oxide in stock						* e (.e.) 01 * ma Pau ma_di						
4	solution in g (m _{ks200})	0,1853	1602MP 40+0,2			0,000167986	m _{iii_t} m _{int} K m _{di}	0,000605065	1,01642E-07	1,01642E-07	uncertainty of	fibalance 1	
	total mass of stock solution in o						$= \frac{m_{\mu_1\phi_1} \cdot F_{\mu_1\mu_1\phi_1} \cdot P \cdot m_{\mu} \cdot \rho_{\mu} \cdot m_{\mu_{\mu}\mu_{\mu}}}{m_{\mu_{\mu}\mu_{\mu}}}$						
5	(m _{111,2})	499,41	PL1200 200+50	0		0,065721047	$m_{m_{2l}}^* \cdot m_{2l} \cdot K \cdot m_{2l}$	-2,24502E-07	-1,47545E-00	1,47545E-00	uncertainty of	f balance 2	
							$m_{\mathcal{R}_{1}\mathcal{O}_{1}} \cdot P \cdot m_{ii} \cdot \rho_{iii} \cdot m_{ii} di$						
6	(Faulantic)	0.75739018				0	$m_{a-i} \cdot m_{ia} \cdot K \cdot m_{di}$	0.000148033			from UPAC o	lata: uncertain	ty negligible
							mea Fried P.m. P.						
	mass of stock solution in diluted		CL 1000 000 00	0			$m_{\mu} \rightarrow m_{\mu} + K \rightarrow m_{\pi}$		1 120226 02				
ŕ	Banation (met.al.)		101200 200120	NV		4,414164865	m E P.m. C.m	1,121105-99	1,128220-00	1,138236-00	uncertainty s	rualanue 2	
							$-\frac{m_{A_{1}}\sigma_{1} + a_{A_{1}}\sigma_{1} + a_{A_{1}}\sigma_{1} + a_{A_{1}}\sigma_{1}}{m_{A_{1}}\sigma_{A_{1}}\sigma_{A_{1}} + a_{A_{1}}\sigma_{A_{1}}\sigma_{A_{1}}}$						
8	mass of diuted solution (mp)	396,45	PL1200 200+10	00		0,039310953	m ₂ , m ₂ , m ₂	-1,12518E-07	-4,42319E-09	4,42319E-09	uncertainty of	f balance 2	
							$m_{Au_1o_1} \cdot F_{Au_1Au_1o_1} \cdot P \cdot m_u \cdot m_{uu_u}$						
9	density of the lot in g/l $(\mathfrak{g}_{\mathrm{cr}})$	997,907535				0,06596093	$m_{\mu_{i}} \cdot m_{i\mu} \cdot K \cdot m_{di}$	1,12354E-07	7,41095E-09	7,41095E-09	see separate	calculation	
	and a start of a start of a start of a start of a						$m_{,\omega_1,0_1} \cdot F_{,\omega_1,\omega_1,0_1} \cdot P \cdot \rho_{\omega_1} \cdot m_{\omega_1,d_1}$						
10	in g (mas)	200	PL1200 200-20	0		0,010160985	$m_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_$	5,605936-07	5,69617E-09	5,69617E-09	uncertainty of	fibalance 2	
							$m_{\mu_{\ell}\sigma_{\ell}} \cdot F_{\mu_{\ell},\mu_{\ell}\sigma_{\ell}} \cdot P \cdot m_{\mu} \cdot \rho_{\mu\ell} \cdot m_{\mu_{\mu},\mu_{\ell}}$						
	tatal mass of the latin o (m.)	40070	BEWORD			34 00404405	$m_{u_{u_{u_{u_{u_{u_{u_{u_{u_{u_{u_{u_{u_$	2 246305.00	7.000048-00	7.000046.00	un cartalature	Charleson 2	
	the many of the latter y (rigg)						$m_{\mu,0} \cdot F_{\mu',\mu,0} \cdot P \cdot m_{\mu'} \cdot \rho_{\mu'} \cdot m_{\mu',\mu'}$				and a many a		
							$m_{\mu_{el}} \cdot m_{\mu} \cdot K^2 \cdot m_{\mu}$						
12	bouyancy correction factor (K)	1,00103149				0,00011		-0,000112003	-1,23203E-08	1,23203E-08	from PTB info	rmations	
				how									
13	resuit (gil)	0,00011212	_	total distance	many of the lot	(in o (mint)		He .	1,45046E-07				
				married stock a	okaioo in the los	in almost							
14	result in mg1	0,11211854											
					mang or owno	an ger (mort)							
15	standard uncertainty in mol	0.00014606		ma	IS OF BRUKED SOF								
1			masse	of stock polution is	a diluted polution	n (mss_dil)							
				quotient of moleo	ular masses (F)	As/As203)							
16	rei, uncertainty	0,13%		total mass of	took solution it	· g (mes_t)							
			mass of a	esenio oxide in sto	ck solution in g	(mAs203)							
17	exp. uncertainty	0,00029009				Purity (P)							
						0,E+00	2,E-08 4,E-08 6,E-08 8,E-08 1,E-07 1,E-07						
10	exp. rel. uncertainty	0,26%						1					
	Koch M	Measu	rement i	incertair	ntv revi	sited - 9	ADCMET PT Workshop 200	7 Dar es	Salaam			13 7	10
	10001, 11.	wicasu	i cinicint t	anoci tali	1.9 10 16		2001 2001 2001 2001	Dar Co	Julaaill			-	

		Universität Stuttgart							
	 Method and Laboratory bias u(bias) – method 2 Use of PT results In order to have a reasonably clear picture of the bias from interlaboratory comparison results, a laboratory should participate at least 6 times within a reasonable time interval 								
	Uncertainty component from the uncertainty of the nominal value								
	between laboratory standard deviations ${\rm s}_{\rm R}$	${\rm s}_{\rm R}$ has been on average 9% in the 6 exercises							
1	Convert to relative uncertainty $u(C_{ref})$	Mean number of participants= 12 $u(C_{ref}) = \frac{s_R}{\sqrt{n}} = \frac{9\%}{\sqrt{12}} = 2.6\%$							
0	or: $u(C_{ref}) = 1.25 \cdot \frac{s_R}{\sqrt{n}}$ for a robust mean t with ISO 13528	o be in accordance							
	Koch, M.: Measurement uncertainty revisited – SADCMET PT Workshop 2007 Dar es Salaam								

	Universität Stuttgar						
 Method and Laboratory bias u(bias) – method 3 From Recovery Tests Recovery tests, for example the recovery of a standard addition to a sample in the validation process, can be used to estimate the systematic error. In this way, validation data can provide a valuable input to the estimation of the uncertainty. 							
uncertainty component from spiking							
uncertainty of the concentration of the spike u(conc)	from the certificate: 95% confidence intervall = \pm 1.2 % u(conc) = 0.6 %						
uncertainty of the added volume u(vol)	from the manufacturer of the micro pipette: max. bias: 1% (rectangular interval), repeatability: max. 0.5% (standard dev.) $u(vol) = \sqrt{\left(\frac{1\%}{\sqrt{3}}\right)^2 + 0.5\%^2} = 0.76\%$						
uncertainty of the spike u(c _{recovery})	$\sqrt{u(conc)^2 + u(vol)^2} = \sqrt{0.6\%^2 + 0.76\%^2} = 1.0\%$						
Koch, M.: Measurement uncertainty revisited – SADCMET PT Workshop 2007 Dar es Salaam							

REPORT ON STATUS OF MICROBIOLOGY WATER PT SCHEME

1. ITEMS RECEIVED FROM PTB

	Description of item	Quantity	Date received
1.	Lactose TTC agar	2x500g	22-03-2007
2.	Magnesium sulphate heptahydrate	500g	22-03-2007
3.	Calcium chloride dihydrate	1kg	22-03-2007
4.	Di-potasium hydrogenphosphate	1kg	22-03-2007
5.	Supplement solution	100ml	22-03-2007
6.	2,3,5,-TTC	10g	22-03-2007
7.	Heraeus Labofuge 400R (centrifuge)	1	13-07-2007
	Accessories		
	 Swing out rotor 	1	
	 Round buckets 	4	
	 Aerosol tight caps 	4	
	 Centri-lap adapter 	4	
	 Centrifuge tubes 	20	

2. TRAINING (Microbiology Staff)

Topics	Number of staff	Date of training
 Quality control of strains from culture; transport medium and trial samples Stability and purity of trial samples and strains during handling Harvesting strains (important stages of growth phase) Bacterial counts of stock solution (solution E) Calculations for spiking Logistics (packaging, labelling, temperature control etc) 	4	18-07-2007
 Practical preparation of stock solution Serial dilutions and spiking of samples Analysis of intra lab samples 	3	01-11-2007

3. TRIAL RUN

A trial run was performed to see if the laboratory was able to prepare the stock culture sample (Solution E), which is the base culture for the preparation of the PT samples. The culture used was *Escherichia coli* (*E. coli*). The following issues were noted:

- On checking the purity of the base culture (solution E) there was some contamination observed (contamination was not identified). However this did not affect the stability of the solution.
- Counts were made as follows:

o 01-11-2007 1.4x10) ⁵ cfu/ml
o 03-11-2007 1.6x10) ⁶ cfu/ml
o 06-11-2007 1.7x10) ⁶ cfu/ml
o 13-11-2007 1.3x10) ⁶ cfu/ml

- It was concluded from the results that the culture was harvested while still in the growth phase. The step for harvesting the cultures will have to be assessed further to ensure that the cultures are stable.
- Intra lab samples were prepared and analysed. The counts were found to be lower than expected. The serial dilutions were prepared using buffered peptone water (standard diluent used in the lab), which may have affected the growth of the E. coli. The transport medium will be used as the diluent in the next trial.

4. PACKAGING

Items available in Kampala:

- Cardboard box
- Foam (for inner lining of box)
- Ice packs

Note: A budget for these items will be forwarded later.

Items not available in Kampala:

- Sterile plastic bottles (100ml)
- Sterile plastic bottles (10ml)

5. WORK PLAN

	Activity	Scheduled date	Remarks
1.	Checking the stability of the serial dilutions for spiking	10-11-2007	 Transport medium will be used instead of Buffered Peptone Water (BPW)
2.	Trial run 2: Preparation of a pure stock solution	Jan 2008	 Purity checks done at all stages
3.	Effect of different storage temperature on PT sample	Feb 2008	
4.	Effect of packaging on stability of sample	Feb 2008	
5.	Trial run 3: Preparation of pure stock solution and PT sample	March 2008	
6.	Preparation of PT sample for distribution	May 2008	 Results of all Trial runs are favourable. All packaging material is received

Prepared by: Patricia Ejalu

Evaluation Questionnaire

For the evaluation of the success of this workshop, please answer the following questions:

How do you judge:	Very very
The venue of the workshop (accommodation, food, conference room) The content of the presentations The material distributed The working group discussions	good good fail pool pool
How do you judge the different parts of this workshop	Very useful not useful 1 2 3 4 5
Evaluation of the chemistry PT Training Lab Visit SADCWaterLab meeting	
The five most important topics for me ha	ave been:
1)	
2)	
3)	
4)	
5)	
Did the workshop fulfill your expectations? If No, why not?	Yes No
What benefits did you draw from the worksl	hop?
	Please use back side for any other comments